7

Bibliography

A. Cerioli, L.A. Garcia-Escudero, A. Mayo-Iscar and M. Riani (2017), Finding the Number of Groups in Model-Based Clustering via Constrained Likelihoods, Journal of Computational and Graphical Statistics, https://doi.org/10.1080/10618600.2017.1390469

A. Fog (2008). Calculation Methods for Wallenius' Noncentral Hypergeometric Distribution. Communications in Statistics - Simulation and Computation Volume 37, 2008 - Issue 2.

A. Mulaik, & J.H. Steiger (Eds.), What if there were no significance tests? pp. 221-257. Mahwah, NJ: Lawrence Erlbaum.

A.W. Bowman and A. Azzalini (1997), "Applied Smoothing Techniques for Data Analysis," Oxford University Press.

Agresti, A. (2002). Categorical Data Analysis. John Wiley & Sons, pp. 23-26.

Agresti, A. (2002). Categorical Data Analysis. John Wiley & Sons, pp. 57-59.

Agresti, A. (2010). Analysis of Ordinal Categorical Data, Second Edition, Wiley, New York, pp. 194-195.

Arnold Zellner (1971). An introduction to Bayesian Inference in Econometrics, Wiley. See the appendix for a detailed description of the inverse Gamma distribution. https://en.wikipedia.org/wiki/Inverse-gamma_distribution.

Arsenin, S., Riani M. (2018), Data mining large contingency tables standard approaches and a new method, submitted

Atkinson A.C, and Riani M. (2008), A robust and diagnostic information criterion for selecting regression models. Journal of the Japan Statistical Society. ISSN: 1882-2754. Vol. 38, No. 1, pp. 3-14.

Atkinson A.C. Riani M. and Cerioli A. (2004), Exploring multivariate data with the forward search, Springer Verlag, New York.

Atkinson A.C. and Riani M. (2000), Robust Diagnostic Regression Analysis, Springer Verlag, New York.

Atkinson A.C. and Riani M. (2000), equation (2.30) for the expression for score test statistic.

Atkinson A.C. and Riani M. (2018). Extensions of the score test. Submitted.

Atkinson A.C., Corbellini A., Riani M., (2017), Robust Bayesian Regression with the Forward Search: Theory and Data Analysis, Test, DOI 10.1007/s11749-017-0542-6

Atkinson A.C., Riani M. and Cerioli A. (2004), Exploring Multivariate Data with the Forward Search, Springer Verlag, New York.

Atkinson A.C., Riani M. and Torti F. (2016), Robust methods for heteroskedastic regression, Computational Statistics and Data Analysis 104, p. 209-222, http://dx.doi.org/10.1016/j.csda.2016.07.002 (ART).

Atkinson A.C., Riani M., (2007), Exploratory Tools for Clustering Multivariate Data. Computational Statistics & Data Analysis, vol. 52, pp. 272-285 ISSN: 0167-9473, doi:10.1016/j.csda.2006.12.034

Atkinson A.C., Riani M., and Cerioli A. (2006). Random Start Forward Searches with Envelopes for Detecting Clusters in Multivariate Data, in: Zani S., Cerioli A., Riani M., Vichi M. EDS. Data Analysis, Classification and the Forward Search, (pp. 163-172), ISBN:3-540-35977-x, BERLIN: Springer Verlag (GERMANY).

Atkinson Riani and Cerioli (2004), Exploring multivariate data with the forward search Springer Verlag, New York.

Atkinson Riani and Cerioli (2004), Exploring multivariate data with the forward search Springer Verlag, New York. See also FSMmmd

Atkinson and Riani (2000), Robust Diagnostic Regression Analysis, Springer Verlag, New York.

Atkinson, A.C. and Riani, M. (2002a). Tests in the fan plot for robust, diagnostic transformations in regression, Chemometrics and Intelligent Laboratory Systems, Vol. 60, pp. 87-100.

Atkinson, A.C. and Riani, M. (2002b). Forward search added variable t tests and the effect of masked outliers on model selection. Biometrika, Vol. 89, pp. 939-946.

Atkinson, A.C. and Riani, M. (2006). Distribution theory and simulations for tests of outliers in regression. Journal of Computational and Graphical Statistics, Vol. 15, pp. 460-476

Atkinson, Riani and Cerioli (2004), Exploring Multivariate Data with the Forward Search, Springer Verlag, New York.

B. N. Parlett, C. Reinsch (1969). Balancing a matrix for calculation of eigenvalues and eigenvectors. Numerische Mathematik, 19. Volume 13, Issue 4, pp 293-304

Barnard, G.A. (1945), A new test for 2x2 tables. Nature, pp. 156-177.

Barnard, G.A. (1947), Significance tests for 2x2 tables, Biometrika, 34, pp. 123-138.

Benzecri, J.-P. (1980), L'analyse des donnees tome 2: l'analyse des correspondances, Paris, Bordas.

Benzecri, J.-P. (1992), Correspondence Analysis Handbook, New-York, Dekker.

Bowman A.W. and Azzalini A. (1997), "Applied Smoothing Techniques for Data Analysis," Oxford University Press.

Box, G. E. P. & Cox, D. R. (1964). An analysis of transformations (withDiscussion). J. R. Statist. Soc. B 26, 211-252

Boyett, J. (1979), Algorithm AS 144: Random R x C Tables with Given Row and Column Totals, Applied Statistics, Volume 28, Number 3, pp. 329-332.

Cerioli A., Farcomeni A. Riani M., (2014). Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter, Journal of Multivariate Analysis, Vol. 126, pp. 167-183, http://dx.doi.org/10.1016/j.jmva.2013.12.010.

Cerioli, A. and Perrotta, D. (2014). Robust Clustering Around Regression Lines with High Density Regions. Advances in Data Analysis and Classification, Volume 8, Issue 1, p. 5-26.

Chaloner K. and Brant R. (1988). A Bayesian Approach to Outlier Detection and Residual Analysis, Biometrika, Vol 75 pp. 651-659.

Corbellini A., Riani M. and Atkinson A.C. (2015), Discussion of the paper 'Multivariate Functional Outlier Detection' by Hubert, Rousseeuw and Segaert, Statistical Methods and Applications.

Croux C. and Rousseeuw P.J.(1992) Time-efficient algorithms for two highly robust estimators of scale, in Computational Statistics, Volume 1, eds. Y . Dodge and J. Whittaker, Heidelberg: Physika-Verlag, 41 1-428.

Croux, C., G. Dhaene, and D. Hoorelbeke (2003). Robust standard errors for robust estimators. Technical report, Dept. of Applied Economics, K.U. Leuven.

D. C. Hoaglin, F. Mosteller, J. W. Tukey (1982), Understanding Robust and Exploratory Data Analysis Wiley, New York.

Davies, R (1973), Numerical inversion of a characteristic function, vol. 60, Biometrika, pp. 415-417

Davies, R. (1980) The distribution of a linear combination of chi-square random variables, Applied Statistics, 29, 323-333.

Davies, R. (1980), The distribution of a linear combination of chi-square random variables, Applied Statistics, vol. 29, pp. 323-333.

Deoras Ameya (2008). http://www.mathworks.com/matlabcentral/fileexchange/21799-clickablelegend-interactive-highlighting-of-data-in-figures/content/clickableLegend.m

Donoho, D.L. (1982), "Breakdown Properties of Multivariate Location Estimators", Ph.D. dissertation, Harvard University.

Ewens, WJ and Grant, GR (2001), Statistical Methods in Bioinformatics, Springer Verlag.

Fisher, R.A.; Yates, F. (1948) [1938]. Statistical tables for biological, agricultural and medical research (3rd ed.). London, Oliver & Boyd. pp 26-27.

For Method 1. Fisher, R.A.; Yates, F. (1948) [1938]. Statistical tables for biological, agricultural and medical research (3rd ed.). London, Oliver & Boyd, pp. 26-27.

For Method 2. Cochran, William G. (1977). Sampling techniques (Third ed.). Wiley.

For Method 3. D. E. Knuth. (1997). The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition. Addison-Wesley, Section 3.2.1: The Linear Congruential Method, pp. 10-26.

For Weighted Sampling Without Replacement: Efraimidis, P.S. and Spirakis, P.G. (2006). Weighted random sampling with a reservoir. Information Processing Letters, 97, 181-185.

Fowlkes E.B. and C.L. Mallows. (1983), A Method for Comparing Two Hierarchical Clusterings Author(s): Source: Journal of the American Statistical Association, Vol. 78, No. 383, pp. 553-569 http://en.wikipedia.org/wiki/Fowlkes-Mallows_index

Frank R. Hampel, Peter J. Rousseeuw and Elvezio Ronchetti (1981), The Change-of-Variance Curve and Optimal Redescending M-Estimators, Journal of the American Statistical Association , Vol. 76, No. 375, pp. 643-648 (HRR)

Fritz H. Garcia-Escudero, L.A. and Mayo-Iscar, A. (2012), A fast algorithm for robust constrained clustering. Available at http://www.eio.uva.es/infor/personas/tclust_algorithm.pdf

Gabriel, K.R. and Odoroff, C. (1990), Biplots in biomedical research, Statistics in Medicine, 9, pp. 469-485.

Garcia-Escudero, L.A., Gordaliza A., Greselin F., Ingrassia S. and Mayo-Iscar A. (2017), Robust estimation of mixtures of regressions with random covariates, via trimming and constraints. Statistics and Computing 27, p. 377-402.

Garcia-Escudero, L.A., Gordaliza A., Greselin F., Ingrassia S., and Mayo-Iscar A. (2016), The joint role of trimming and constraints in robust estimation for mixtures of gaussian factor analyzers. Computational Statistics & Data Analysis 99, p. 131-147.

Garcia-Escudero, L.A., Gordaliza A., Mayo-Iscar A., and San Martin R. (2010), Robust clusterwise linear regression through trimming. Computational Statistics and Data Analysis 54, 3057-3069.

Garcia-Escudero, L.A., Gordaliza, A., Matran, C. and Mayo-Iscar, A. (2008), A General Trimming Approach to Robust Cluster Analysis. Annals of Statistics, Vol.36, 1324-1345. Technical Report available at: http://www.eio.uva.es/inves/grupos/representaciones/trTCLUST.pdf

Garcia-Escudero, L.A., Gordaliza, A., Matran, C. and Mayo-Iscar, A. (2008), A General Trimming Approach to Robust Cluster Analysis. Annals of Statistics, Vol.36, 1324-1345. Technical Report available at: www.eio.uva.es/inves/grupos/representaciones/trTCLUST.pdf

Gervini D, Yohai VJ (2002), A class of robust and fully efficient regression estimators. Annals of Statistics 30, pp. 583– 616

Goktas, A. and Oznur, I. (2011). A comparision of the most commonly used measures of association for doubly ordered square contingency tables via simulation. Metodoloski zvezki 8(1), pp. 17-37, URL address: www.stat-d.si/mz/mz8.1/goktas.pdf

Goodman, L. A. and Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, pp. 732-764.

Goodman, L. A. and Kruskal, W. H. (1959). Measures of association for cross classifications II: Further Discussion and References, Journal of the American Statistical Association, 54, pp. 123-163.

Goodman, L. A. and Kruskal, W. H. (1963). Measures of association for cross classifications III: Approximate Sampling Theory, Journal of the American Statistical Association, 58, pp. 310-364.

Goodman, L. A. and Kruskal, W. H. (1972). Measures of association for cross classifications IV: Simplification of Asymptotic Variances. Journal of the American Statistical Association, 67, pp. 415-421.

Greenacre, M.J. (1993), Biplots in correspondence Analysis, Journal of Applied Statistics, 20, pp. 251 - 269.

Greenacre, M.J. (1993), Correspondence Analysis in Practice, London, Academic Press.

Greene W.H.(1987), Econometric Analysis (5th edition, section 11.7.1 pp. 232-235), (7th edition, section 9.7.1 pp. 280-282), Prentice Hall.

Hampel, F.R., Rousseeuw, P.J. and Ronchetti E. (1981), The Change-of-Variance Curve and Optimal Redescending M-Estimators, Journal of the American Statistical Association , Vol. 76, No. 375, pp. 643-648. (HRR)

Hampel,F.R., Rousseeuw P.J. and Ronchetti E.(1981), The Change-of-Variance Curve and Optimal Redescending M-Estimators, Journal of the American Statistical Association , Vol. 76, No. 375, pp. 643-648 (HRR)

Hampel,F.R., Rousseeuw P.J. and Ronchetti E.(1981), The Change-of-Variance Curve and Optimal Redescending M-Estimators, Journal of the American Statistical Association , Vol. 76, No. 375, pp. 643-648. (HRR)

Harveille D. A. (1997). Matrix Algebra froma statistician's perspective, Springer, New York

Hentschke H. and Stüttgen M. (2015), Measures of Effect Size Toolbox Version 1.4. Code by Harald Hentschke (University of Tübingen) and Maik Stüttgen (University of Bochum).

Hentschke and Stüttgen (2011), European Journal of Neuroscience, 34, pp. 1887-1894.

Hollander, M, Wolfe, D. A., Chicken, E. (2014). Nonparametric Statistical Methods, Third edition, Wiley,

Huber P. and Ronchetti E. (2009), Robust Statistics, Wiley (equation 7.119, p. 176).

Hubert L. and Arabie P., (1985), Comparing Partitions, Journal of Classification, vol. 2, pp 193-218.

Juan J. and Prieto F.J. (1995) Journal of Computational and Graphical Statistics, 4, 319-334.

Knuth, D. (2005). Generating All Combinations and Partitions. The Art of Computer Programming, Vol. 4, Fascicle 3. Reading, Mass., Addison-Wesley.

Knuth, Donald E. (1969). The Art of Computer Programming volume 2, Seminumerical algorithms, Reading, MA: Addison-Wesley, pp. 124-125.

Knuth, Donald E. (1997). The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third ed. Addison-Wesley. pp. 52--74. ISBN 0-201-89683-4.

Koller, M. and W. A. Stahel (2011). Sharpening wald-type inference in robust regression for small samples. Computational Statistics & Data Analysis 55(8), pp. 2504-2515.

Koop G., Bayesian Econometrics (2003) Chapt. 3, WIley, NJ

L. Hubert and P. Arabie (1985) "Comparing Partitions" Journal of Classification 2:193-218

Lehmer, D. H. (1964). The machine tools of combinatorics. In E. F. Beckenbach (Ed.), Applied Combinatorial Mathematics, pp. 5--31. New York, Wiley.

Liebetrau, A. M. (1983). Measures of Association, Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-004, Newbury Park, CA: Sage, pp. 49-56.

Lin C.Y., Yang M.C. (2009), Improved p-value tests for comparing two independent binomial proportions. Communications in Statistics-Simulation and Computation, 38(1):78-91.

Maitra, R. and Melnykov, V. (2010), Simulating data to study performance of finite mixture modeling and clustering algorithms, The Journal of Computational and Graphical Statistics, 2:19, 354-376. (to refer to this publication we will use "MM2010 JCGS")

Maitra, R. and Melnykov, V. (2010), Simulating data to study performance of finite mixture modeling and clustering algorithms, The Journal of Computational and Graphical Statistics, 2:19, 354-376. (to refer to this publication we will use "MM2010 JCGS").

Mardia, K.V., J.T. Kent, J.M. Bibby (1979). Multivariate Analysis. Academic Press, London-New York-Toronto-Sydney-San Francisco.

Mardia, K.V., J.T. Kent, and J.M. Bibby (1979), "Multivariate Analysis," Academic Press, London, p. 140. (MKB)

Maronna, R.A. and Yohai, V.J. (1995), "The behavior of the Stahel-Donoho robust multivariate estimator", Journal of the American Statistical Association, 90, 329-341.

Maronna, R.A., Martin D. and Yohai V.J. (2006), Robust Statistics, Theory and Methods, Wiley, New York.

Maronna, R.A., and Yohai V.J. (2010), Correcting MM estimates for fat data sets. Computational Statistics and Data Analysis, 54, pp. 3168-3173.

Melnykov, V. (2016), "Merging Mixture Components for Clustering Through Pairwise Overlap". Journal of Computational and Graphical Statistics, Vol.25, n.1, 66-90.

Melnykov, V., Chen, W.-C., and Maitra, R. (2012), MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms, Journal of Statistical Software, 51:12, 1-25.

Melnykov, V., Michael, S. (2017), "Clustering large datasets by merging K-means solutions". Submitted.

Morton B. B. and Benedetti J. K. (1977), Sampling Behavior of Tests for Correlation in Two-Way Contingency Tables, Journal of the American Statistical Association Vol. 72, pp. 309-315

P.J. Huber and E.M. Ronchetti (2009), Robust Statistics, 2nd Edition, Wiley New York.

Parlett, B. N. and C. Reinschthe (1969), Balancing a matrix for calculation of eigenvalues and eigenvectors, Numerische Mathematik, 19, Volume 13, Issue 4, pp 293-304.

Parlett, B. N. and C. Reinschthe (1971), Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors, Handbook for Auto. Comp., Vol. II, Linear Algebra, pp. 315-326.

Patefield M., (1981), Algorithm AS 159: An Efficient Method of Generating RXC Tables with Given Row and Column Totals, Applied Statistics, Volume 30, Number 1, pages 91-97.

Read, TRC and Cressie, NAC (1988), Goodness of Fit Statistics for Discrete Multivariate Data. Springer Verlag.

Rencher A.C. (2002), "Methods of Multivariate Analysis", 2nd edition, Wiley, New York, p. 280-284

Riani M., Cerioli A., Atkinson A.C., Perrotta D. (2014), Monitoring Robust Regression. Electronic Journal of Statistics, Vol. 8, pp. 646-677.

Riani M., Cerioli A., Atkinson A.C., Perrotta D., Torti F. (2008), Fitting Mixtures of Regression Lines with the Forward Search, in: Mining Massive Data Sets for Security F. Fogelman-Soulie et al. EDS, (pp. 271-286), IOS Press, Amsterdam (The Netherlands).

Riani M., Cerioli A., Atkinson A.C., and Perrotta D. (2014), Monitoring Robust Regression. Electronic Journal of Statistics, Vol. 8 pp. 646-677.

Riani M., Cerioli A., Atkinson A.C., and Perrotta D. (2014), Monitoring Robust Regression. Electronic Journal of Statistics, Vol. 8 pp. 646-677.

Riani M., Cerioli A., Perrotta D. and Torti F. (2015), Simulating mixtures of multivariate data with fixed cluster overlap in FSDA, Advances in data analysis and classification. Volume 9, Issue 4, pp 461-481, DOI 10.1007/s11634-015-0223-9.

Riani M., Cerioli A., Torti F. (2014). On consistency factors and efficiency of robust S-estimators, TEST, Volume 23, Issue 2, pp 356-387. DOI: 10.1007/s11749-014-0357-7

Riani M., Cerioli A., Torti F. (2014). On consistency factors and efficiency of robust S-estimators, TEST, Volume 23, Issue 2, pp 356-387. http://dx.doi.org/10.1007/s11749-014-0357-7

Riani M., Corbellini A., Atkinson A.C. (2017), Very Robust Bayesian Regression for Fraud Detection, submitted

Riani M., Perrotta D. and Cerioli (2015), The Forward Search for Very Large Datasets, Journal of Statistical Software

Riani and Atkinson (2010). Robust Model Selection with Flexible Trimming, Computational Statistics and Data Analysis, special issue on robust model selection.

Riani, M. and Atkinson, A.C. (2007). Fast calibrations of the forward search for testing multiple outliers in regression, Advances in Data Analysis and Classification, Vol. 1, pp. 123-141.

Riani, M., Atkinson A.C., Cerioli A. (2009). Finding an unknown number of multivariate outliers. Journal of the Royal Statistical Society Series B, Vol. 71, pp. 201-221.

Riani, M., Zani S. (1997). An iterative method for the detection of multivariate outliers, Metron, vol. LV, pp. 101-117.

Riordan, John (1958). An Introduction to Combinatorial Analysis, New York, NY: Wiley & Sons.

Rousseeuw P.J. and Croux C., (1993), Alternatives to the median absolute deviation, Journal of American Statistical Association 88, 1273-1283

Rousseeuw PJ, Leroy AM (1987), Robust regression and outlier detection, Wiley.

Rousseeuw, P.J. (1984), "Least Median of Squares Regression", Journal of the American Statistical Association, Vol. 79, pp. 871-881.

Rousseeuw, P.J. and Leroy A.M. (1987), Robust regression and outlier detection, Wiley New York.

Rousseeuw, P.J., Perrotta D., Riani M., Hubert M. (2017), Robust Monitoring of Many Time Series with Application to Fraud Detection,

Rousseeuw, P.J., Perrotta D., Riani M., Hubert M. (2018), Robust Monitoring of Many Time Series with Application to Fraud Detection. Submitted.

Rousseeuw, P.J., Perrotta D., Riani M., Hubert M. (2018), Robust Monitoring of Time Series with Application to Fraud Detection, Submitted.

Rudas, T. (1986), A Monte Carlo Comparision of Small Sample Behaviour of The Pearson, the Likelihood Ratio and the Cressie-Read Statistics, Journal Statistcal Computation and Simulation, vol 24, pp 107-120.

SAS documentation (2009). See http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf, pp. 1738-1740.

Salibian-Barrera, M., Willems, G. and Zamar, R.H. (2008). The fast-tau estimator for regression. Journal of Computational and Graphical Statistics, 17, 659-682. (Referred below as SBWZ08)

Salini S., Cerioli A., Laurini F. and Riani M. (2014), Reliable Robust Regression Diagnostics, submitted.

Silverman, B.W. (1998). Density Estimation for Statistics and Data Analysis. London: Chapman & Hall/CRC. p. 48. ISBN 0-412-24620-1.

Simon G. (1978), Alternative analysis for the singly ordered contingency table, Journal of the American Statistical Association, Vol. 69, pp. 971-976.

Smithson, M.J. (2003) Confidence Intervals, Quantitative Applications in the Social Sciences Series, No. 140. Thousand Oaks, CA: Sage. pp. 39-41.

Smithson, M.J. (2003), Confidence Intervals, Quantitative Applications in the Social Sciences Series, No. 140. Thousand Oaks, CA: Sage. pp. 39-41.

Stahel, W.A. (1981), "Breakdown of covariance estimators", Research Report 31, Fachgruppe für Statistik, E.T.H. Zürich, Switzerland.

Steiger, J. H., & Fouladi, R. T. (1997), Noncentrality interval estimation and the evaluation of statistical models. In L. L. Harlow, S.,

Suissa, S. and Shuster, J. J. (1985), Exact Unconditional Sample Sizes for the 2x2 Binomial Trial, Journal of the Royal Statistical Society, Ser. A, 148, pp. 317-327.

Torti F., Perrotta D., Riani, M. and Cerioli A. (2018). Assessing Robust Methodologies for Clustering Linear Regression Data. Submitted.

Tufte E.R. (1983), The visual display of quantitative information, Graphics Press, Cheshire

Tufte E.R. (1983), The visual display of quantitative information. Graphics Press, Cheshire

Tufte E.R. (1983). The visual display of quantitative information, Graphics Press, Cheshire

Tufte E.R. (1983). The visual display of quantitative information. Graphics Press, Cheshire

Urbano L.-S., van de Velden M., Kiers H.A.L. (2009), CAR: A MATLAB Package to Compute Correspondence Analysis with Rotations, Journal of Statistical Software, Volume 31, Issue 8.

Van Aelst, S. and Wang, X. and Zamar, R. and Zhu, R. (2006) Linear Grouping Using Orthogonal Regression, Computational Statistics and Data Analysis 50, 1287-1312.

Wong, C. K. and M. C. Easton, (1980). An Efficient Method for Weighted Sampling Without Replacement. SIAM Journal of Computing 9(1), pp. 111-113.

YOHAI V.J., ZAMAR R.H. (1997) Optimal locally robust M-estimates of regression. J Plan Stat Inference 64, pp. 309-323

Yeo, I.-K. and Johnson, R. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954-959.

Yeo, In-Kwon and Johnson, Richard (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954-959.

Yohai V.J. and Zamar R.H. (1988) High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale, Vol. 83, No. 402, pp. 406-413 (Referred below as YZ88)

Yohai V.J., Zamar R.H. (1997) Optimal locally robust M-estimates of regression. J Plan Stat Inference 64, pp. 309-323

Zamar, R. (2009), Robust linear clustering. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71: 301?318. doi: 10.1111/j.1467-9868.2008.00682.x

Zani, S., Riani M. and Cerioli A. (1998), Robust bivariate boxplots and multiple outlier detection, Computational Statistics and Data Analysis, 28, p. 257-270

submitted.(RPRH)