tobitinv

tobitinv computes the inverse of the tobit cumulative distribution function.

Syntax

Description

example

x =tobitinv(p) Using all default options.

example

x =tobitinv(p, mu) mu is specified.

example

x =tobitinv(p, mu, sigma) mu sigma are specified.

example

x =tobitinv(p, mu, sigma, left) mu sigma and left are specified.

example

x =tobitinv(p, mu, sigma, left, right) Check accuracy of results, monitoring $|x-F_{tobit}^{-1} (F_{tobit}(x))|$.

Examples

expand all

  • Using all default options.
  • In this case we assume that mu=0, sigma=1, left=0, right=Inf

    x=tobitinv(0.5)

  • mu is specified.
  • In this case we assume that sigma=1, left=0, right=Inf

    x=tobitinv(0.8,1)

  • mu sigma are specified.
  • In this case we assume that left=0, right=Inf

    x=tobitinv(0.8,1,0.4)

  • mu sigma and left are specified.
  • In this case we assume that right=Inf

    x=tobitinv(0.95,2.5,0.4,3)

  • Check accuracy of results, monitoring $|x-F_{tobit}^{-1} (F_{tobit}(x))|$.
  • a=100; 
    b=200;
    mu=(a+b).*0.6;
    sigma=40;
    x=tobitrnd(mu,sigma,a,b,100,1);
    Y=zeros(length(x),1);
    Ychk=Y;
    for i=1:length(x)
    Y(i)=x(i)-tobitinv(tobitcdf(x(i),mu,sigma,a,b),mu,sigma,a,b);
    end
    disp('Maximum deviation from 0');
    disp(max(max(abs(Y))));
    Maximum deviation from 0
         0
    
    

    Input Arguments

    expand all

    p — Probability at which the inverse of the cdf must be evaluated $0 \leq p \leq 1$. Scalar, vector or matrix 3D array of the same size of x and b.

    A scalar input functions as a constant matrix of the same size as the other input.

    See the section called "More About:" for more details about the inverse gamma distribution.

    Data Types: single | double

    Optional Arguments

    mu — location parameter of the tobit distribution. Scalar, vector or matrix 3D array of the same size of x and sigma, Lower, Upper.

    A scalar input functions as a constant matrix of the same size as the other input. Default value of mu is 0.

    See "More About:" for details about the tobit distribution.

    Example: 'mu',10

    Data Types: single | double

    sigma — scale parameter of the tobit distribution. Scalar, vector or matrix 3D array of the same size of x and sigma, Lower, Upper.

    A scalar input functions as a constant matrix of the same size as the other input. Default value of sigma is 1 See "More About:" for details about the tobit distribution.

    Example: 'sigma',800

    Data Types: single | double

    left — lower limit for the censored random variable. Scalar.

    If set to -Inf, the random variable is assumed to be not left-censored; default value of left is zero (classical tobit model).

    Example: 'left',1

    Data Types: double

    right — right limit for the censored random variable. Scalar.

    If set to Inf, the random variable is assumed to be not right-censored; default value of left is Inf (classical tobit model).

    Example: 'right',800

    Data Types: double

    Output Arguments

    expand all

    x —inverse CDF value. Scalar, vector or matrix or 3D array of the same size of input arguments p, mu, sigma, left, right

    $p=\int_0^x f_{tobit}(t | \mu, \sigma, left, right) dt$ is the inverse of tobit cdf with parameters mu, sigma, left, right for the corresponding probabilities in p.

    More About

    expand all

    Additional Details

    The cdf of the tobit distribution defined over the support $x \in R $ with location parameter $mu$, scale parameter $sigma$ and lower and upper censor values left and right \[ F_{tobit}(x, \mu, \sigma, left, right) =\int_0^x f(t) dt \]

    References

    Greene, W.H. (2008), "Econometric Analysis, Sixth Edition", Prentice Hall, pp. 871-875.

    Tobin, J. (1958), Estimation of Relationships for Limited Dependent Variables, "Econometrica", 26, pp. 24-36.

    This page has been automatically generated by our routine publishFS