Yohai and Zamar (1997)  showed that the $\rho$ function given above
  is optimal in the following highly desirable sense: the final M estimate
  has a breakdown point of one-half and minimizes the maximum bias under
  contamination distributions (locally for small fraction of
  contamination), subject to achieving a desidered nominal asymptotic
  efficiency when the data are Gaussian.
 
 
\[
 \label{opt}
 \rho(x) = \begin{cases}
  1.3846 \left( \frac{x}{c} \right)^2  \qquad |x| \leq \frac{2}{3} c \\
  0.5514-2.6917\left( \frac{x}{c} \right)^2+10.7668\left( \frac{x}{c} \right)^4-11.6640\left( \frac{x}{c} \right)^6+4.0375\left( \frac{x}{c} \right)^8  
  \qquad  \frac{2}{3} c <  |x|  \leq c 
 \\
 1 \qquad                   |x| >c
 \end{cases}
 \]