HAeff

HAeff finds the tuning constant that guarrantees a requested asymptotic efficiency

Syntax

Description

example

ceff =HAeff(eff, v) Find c for fixed efficiency.

example

ceff =HAeff(eff, v, abc) Example where three input parameters are supplied.

Examples

expand all

  • Find c for fixed efficiency.
  • The constant c associated to a nominal location efficiency of 95% in regression is c = 0.690998716841394

    c=HAeff(0.95,1)

  • Example where three input parameters are supplied.
  • Find constant c associated to a nominal location efficiency of 95 per cent in regression when tun=[1.5,3.5,8].

    tun=[1.5,3,8];
    c=HAeff(0.95,1,tun);

    Input Arguments

    expand all

    eff — efficiency. Scalar.

    Scalar which contains the required efficiency (of location or scale estimator).

    Generally eff=0.85, 0.9 or 0.95.

    Data Types: single| double

    v — number of response variables. Scalar.

    Number of variables of the dataset (for regression v=1) UP TO NOW v=1 (JUST REGRESSION) TO DO FOR MULTIVARIATE ANALYSIS

    Data Types: single| double

    Optional Arguments

    abc — parameters of Hampel estimator. Vector.

    Vector of length 3 which contains the parameters of Hampel estimator. If vector abc is not specified it is set equal to [2, 4, 8]

    Example: [1.5,3.5,8]

    Data Types: double

    Output Arguments

    expand all

    ceff —Requested tuning constant. Scalar

    Tuning constatnt of Hampel rho function associated to requested value of efficiency

    More About

    expand all

    Additional Details

    Function HApsi transforms vector u as follows.

    \[ HApsi(u) = \left\{ \begin{array}{cc} u & |u| <= a \\ a \times sign(u) & a <= |u| < b \\ a \frac{c-|u|}{c-b} \times sign(u) & b <= |u| < c \\ 0 & |u| >= c \end{array} \right. \]

    where $a$= ctun *param(1).

    $b$= ctun *param(2).

    $c$= ctun *param(3).

    The default is $a$= 2*ctun.

    $b$= 4*ctun.

    $c$= 8*ctun.

    It is necessary to have 0 <= a <= b <= c.

    Parameter ctun multiplies parameters (a,b,c) of Hampel estimator.

    References

    Hoaglin, D.C., Mosteller, F., Tukey, J.W. (1982), "Understanding Robust and Exploratory Data Analysis", Wiley, New York.

    This page has been automatically generated by our routine publishFS