HAwei

HAwei computes weight function psi(u)/u using Hampel proposal

Syntax

Description

example

w =HAwei(u, ctuning) Plot of weight function.

Examples

expand all

  • Plot of weight function.
  • Obtain Figure 11.15 (panel b) p. 382 of Hoaglin et al. (1987)

    x=-8:0.01:8;
    weiHA=HAwei(x,[1 2 4 8]);
    plot(x,weiHA)
    xlabel('x','Interpreter','Latex')
    ylabel('$W (x) =\psi(x)/x$','Interpreter','Latex')
    Click here for the graphical output of this example (link to Ro.S.A. website). Graphical output could not be included in the installation file because toolboxes cannot be greater than 20MB. To load locally the image files, download zip file http://rosa.unipr.it/fsda/images.zip and unzip it to <tt>(docroot)/FSDA/images</tt> or simply run routine <tt>downloadGraphicalOutput.m</tt>

    Input Arguments

    expand all

    u — scaled residuals or Mahalanobis distances. Vector.

    n x 1 vector containing residuals or Mahalanobis distances for the n units of the sample

    Data Types: single| double

    ctuning — tuning parameters. Scalar or Vector.

    Scalar or vector of length 4 which specifies the value of the tuning constant c (scalar greater than 0 which controls the robustness/efficiency of the estimator) and the prefixed values of paramters a, b, c:

    ctuning(1) = tuning constant which will multiply parameters a, b and c of Hampel rho (psi) function;

    ctuning(2) = paramter a of Hampel rho (psi) function;

    ctuning(3) = paramter b of Hampel rho (psi) function;

    ctuning(4) = paramter c of Hampel rho (psi) function.

    Remark: if length(ctuning)==1 values of a, b and c will be set to a=2*ctuning b=4*ctuning c=4*ctuning With these choices, if ctuning=1 the resulting influence function is nearly identical to the biweight with parameter 8.

    Data Types: single| double

    More About

    expand all

    Additional Details

    Function HAwei transforms vector u as follows \[ HAwei(u) = \left\{ \begin{array}{cc} 1 & |u| <= a \\ \frac{a}{|u|} & a \leq |u| < b \\ \frac{a}{|u|} \times \frac{c-|u|}{c-b}, & b <= |u| < c \\ 0 & |u| >= c \end{array} \right. \]

    where ctun=ctuning(1).

    $a$= ctun *ctuning(2).

    $b$= ctun *ctuning(3).

    $c$= ctun *ctuning(4).

    The default is $a$= 2*ctun.

    $b$= 4*ctun.

    $c$= 8*ctun.

    References

    Hoaglin, D.C., Mosteller, F., Tukey, J.W. (1982), "Understanding Robust and Exploratory Data Analysis", Wiley, New York.

    See Also

    | |

    This page has been automatically generated by our routine publishFS