ncx2mixtcdf computes cumulative distribution function of a linear combination of non-central chi-square +N(0,s)
Given random variable $Q$ defined as \[ Q = \lambda_1 \chi^2_1 + \lambda_2 \chi_2 + ... + \lambda_k \chi^2_k +\sigma Z \]
where $\chi^2_1, ..., \chi^2_k$ are $k$ non central chi squared random variables, with non centrality parameters $\delta=(\delta_1, ..., \delta_k)$ and degrees of freedom $df=(df_1, ..., df_k)$.
and $Z$ is a standard normal random variable, the purpose of this routine is to compute $F_Q(x | df, delta) = P(Q < x| df, delta)$ , that is the cdf of $Q$ evaluated at $x$.
Davies, R. (1973), Numerical inversion of a characteristic function, "Biometrika", Vol. 60, pp. 415-417.
Davies, R. (1980), The distribution of a linear combination of chi-square random variables, "Applied Statistics", Vol. 29, pp. 323-333.