GUIcov shows the necessary calculations to obtain the covariance in a GUI.




out =GUIcov(x, y) Example of unweighted covariance.


out =GUIcov(x, y, w) Example 1 of weighted covariance.


expand all

  • Example of unweighted covariance.
  • The data below are referred to monthly income of 13 families and their corrisponding free time expenditure (See page 223 of [MRZ]).

    % x= monthly income of 13 families.
    % y= free time expenditure.
    x=[1330 1225 1225 1400 1575 2050 1750 2240 1225 1730 1470 2730 1380];
    y=[120 60 30 60 90 150 140 210 30 100 30 270 260];

  • Example 1 of weighted covariance.
  • In this example vectors x y and w are supplied. (See Covariance from Wikipedia)

    x=[  8     8     9     9];
    y=[6     7     5     7];
    w=[0.4000    0.1000    0.3000    0.2000];

    Related Examples

    expand all

  • Example 2 of weighted covariance.
  • In this example first input argument is a table and only this argument is passed. (See Covariance from Wikipedia)

    N=[0 0.4 0.1
    0.3	 0	0.2];
    colnames={'5' '6'	'7'};
    Click here for the graphical output of this example (link to Ro.S.A. website)

    Input Arguments

    expand all

    x — vector of numeric data or table. Vector or table.

    Vector containing strictly numerical data.

    If x is table the second input argument y is not necessary. In this case weighted covariance is computed where the weights are the values inside the contingency table.

    Data Types: double or table

    y — vector of numeric data. Vector.

    Vector containing strictly numerical data.

    This input argument is not requested if previously input argument x is a table.

    Data Types: double

    Optional Arguments

    w — weights. Vector.

    Vector of the same length of x containing the weights (frequencies) assigned to each observation.

    Example: 1:10

    Data Types: double

    Output Arguments

    expand all

    out — description Structure

    detailed output to compute the index. struct.

    Structure containing the following fields.

    Value Description

    table with n+1 rows (where n is the length of x) containing what is shown in the GUI.

    Last row contains the totals.


    scalar containing the covariance.


    Milioli, M.A., Riani, M., Zani, S. (2019), "Introduzione all'analisi dei dati statistici (Quarta edizione ampliata)". [MRZ]

    Cerioli, A., Milioli, M.A., Riani, M. (2016), "Esercizi di statistica (Quinta edizione)". [CMR]

    This page has been automatically generated by our routine publishFS