Bibliography

Agresti, A. (2002), Categorical Data Analysis, John Wiley & Sons.

Agresti, A. (2010), Analysis of Ordinal Categorical Data, Second Edition, Wiley, New York, pp. 194-195.

Andrews, D. F. (1974). A Robust Method for Multiple Linear Regression, Technometrics, V. 16, pp. 523-531, https://doi.org/10.1080/00401706.1974.10489233

Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J., Rogers, W.H., and Tukey, J.W. (1972), Robust Estimates of Location: Survey and Advances, Princeton Univ. Press, Princeton, NJ.

Arsenis, S. and Riani, M. (2019), Data mining large contingency tables standard approaches and a new method, in preparation.

Athey, S., Eckles, D., & Imbens, G. W. (2018). Exact p-values for network interference, Journal of the American Statistical Association, Vol. 113, pp. 230-240.

Atkinson and Riani (2000), Robust Diagnostic Regression Analysis, Springer Verlag, New York.

Atkinson, A.C. Riani, M. and Corbellini A. (2021), The Box–Cox Transformation: Review and Extensions, Statistical Science, Vol. 36, pp. 239-255, https://doi.org/10.1214/20-STS778

Atkinson, A.C. Riani, M., Corbellini A. (2019), The analysis of transformations for profit-and-loss data, Journal of the Royal Statistical Society, Series C, Applied Statistics, https://doi.org/10.1111/rssc.12389

Atkinson, A.C. and Riani, M. (2000), Robust Diagnostic Regression Analysis, Springer Verlag, New York.

Atkinson, A.C. and Riani, M. (2002a), Tests in the fan plot for robust, diagnostic transformations in regression, Chemometrics and Intelligent Laboratory Systems, Vol. 60, pp. 87-100.

Atkinson, A.C. and Riani, M. (2002b), Forward search added variable t tests and the effect of masked outliers on model selection, Biometrika, Vol. 89, pp. 939-946.

Atkinson, A.C. and Riani, M. (2006), Distribution theory and simulations for tests of outliers in regression, Journal of Computational and Graphical Statistics, Vol. 15, pp. 460-476.

Atkinson, A.C. and Riani, M. (2008), A robust and diagnostic information criterion for selecting regression models, Journal of the Japan Statistical Society, Vol. 38, pp. 3-14.

Atkinson, A.C. and Riani, M., (2007), Exploratory Tools for Clustering Multivariate Data, Computational Statistics & Data Analysis, Vol. 52, pp. 272-285, doi:10.1016/j.csda.2006.12.034

Atkinson, A.C., Corbellini, A. and Riani, M., (2017), Robust Bayesian Regression with the Forward Search: Theory and Data Analysis, Test, Vol. 26, pp. 869-886, https://doi.org/10.1007/s11749-017-0542-6

Atkinson, A.C., Riani, M. and Cerioli, A. (2004), Exploring multivariate data with the forward search, Springer Verlag, New York.

Atkinson, A.C., Riani, M. and Corbellini C. (2019), The Analysis of Transformations for Profit and Loss Data, Journal of the Royal Statistical Society. Series C: Applied Statistics, https://doi.org/10.1111/rssc.12389

Atkinson, A.C., Riani, M. and Torti, F. (2016), Robust methods for heteroskedastic regression, Computational Statistics and Data Analysis, Vol. 104, p. 209-222, http://dx.doi.org/10.1016/j.csda.2016.07.002

Atkinson, A.C., Riani, M., and Cerioli, A. (2006), Random Start Forward Searches with Envelopes for Detecting Clusters in Multivariate Data, in: Zani S., Cerioli A., Riani M., Vichi M., Eds., Data Analysis, Classification and the Forward Search, pp. 163-172, Springer Verlag.

Atkinson, A.C., Riani,M., Corbellini,A., Perrotta D., and Todorov,V. (2024), Applied Robust Statistics through the Monitoring Approach, Heidelberg: Springer Nature.

Azzini, I., Perrotta, D. and Torti, F. (2023), A practically efficient fixed-pivot selection algorithm and its extensible MATLAB suite, arXiv, stat.ME, eprint 2302.05705

Barabesi, L. and Cerioli, A. and García-Escudero, L.A. and Mayo-Iscar, A. (2023), Trimming heavy-tailed multivariate data. Submitted.

Barabesi, L. and Pratelli, L. (2019), On the properties of a Takacs distribution, Statistics and Probability Letters, Vol. 148, pp. 66-73.

Barabesi, L., Cerasa, A., Perrotta, D. and Cerioli, A. (2016), Modeling international trade data with the Tweedie distribution for anti-fraud and policy support, European Journal of Operational Research, Vol. 248, pp. 1031-1043.

Barnard, G.A. (1945), A new test for 2x2 tables, Nature, pp. 156-177.

Barnard, G.A. (1947), Significance tests for 2x2 tables, Biometrika, Vol. 34, pp. 123-138.

Basu, A., Harris, I.R., Hjort, N.L. and Jones, M.C., (1998), Robust and efficient estimation by minimizing a density power divergence, Biometrika, Vol. 85, pp. 549-559.

Benzecri, J.-P. (1980), L'analyse des donnees tome 2: l'analyse des correspondances, Paris, Bordas.

Benzecri, J.-P. (1992), Correspondence Analysis Handbook, New-York, Dekker.

Blanchet, J. H. and Sigman, K. (2011), On exact sampling of stochastic perpetuities, Journal of Applied Probability, Vol. 48A, pp. 165-182.

Bleich, C. and Overton, M.L. (1983), A linear-time algorithm for the weighted median problem. Technical Report 75, New York University, Courant Institute of Mathematical Sciences.

Bock, T. (2011), Improving the display of correspondence analysis using moon plots, International Journal of Market Research, Vol. 53, pp. 307-326.

Bowman, A.W. and Azzalini, A. (1997), Applied Smoothing Techniques for Data Analysis, Oxford University Press.

Box, G.E.P. and Cox, D.R. (1964), An analysis of transformations (with Discussion), Journal of the Royal Statistical Society Series B, Vol. 26, pp. 211-252.

Boyett, J. (1979), Algorithm AS 144: Random R x C Tables with Given Row and Column Totals, Applied Statistics, Vol. 28, pp. 329-332.

Breiman, L. and Friedman, J.H. (1985), Estimating optimal transformations for multiple regression and correlation, Journal of the American Statistical Association, Vol. 80, pp. 580-597.

Brys G., Hubert M. and Struyf A. (2004), A Robust Measure of Skewness, Journal of Computational and Graphical Statistics, Vol. 13(4), pp. 996-1017.

Carroll, R.J. and Ruppert, D. (1988), Transformation and Weighting in Regression, London: Chapman and Hall.

Celeux, G., Govaert, G. (1995), Gaussian parsimonious clustering models, Pattern Recognition, 28, pp. 781-793.

Cerioli A., Riani M., Atkinson A.C., Corbellini A. (2018). The power of monitoring: how to make the most of a contaminated multivariate sample, Statistical Methods and Applications (with discussion)", Vol. 27, pp. 559–587.

Cerioli, A. Garcia-Escudero, L.A., Mayo-Iscar, A. and Riani, M. (2017), Finding the Number of Groups in Model-Based Clustering via Constrained Likelihoods, Journal of Computational and Graphical Statistics, pp. 404-416, https://doi.org/10.1080/10618600.2017.1390469

Cerioli, A. and Perrotta, D. (2014). Robust Clustering Around Regression Lines with High Density Regions. Advances in Data Analysis and Classification, Vol. 8, pp. 5-26.

Cerioli, A., Farcomeni, A. and Riani M. (2014), Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter, Journal of Multivariate Analysis, Vol. 126, pp. 167-183, http://dx.doi.org/10.1016/j.jmva.2013.12.010

Cerioli, A., Garcia-Escudero, L.A., Mayo-Iscar, A. and Riani M. (2017), Finding the Number of Groups in Model-Based Clustering via Constrained Likelihoods, Journal of Computational and Graphical Statistics, pp. 404-416, https://doi.org/10.1080/10618600.2017.1390469

Cerioli, A., Milioli, M.A., Riani, M. (2016), Esercizi di statistica (Quinta edizione).

Chaloner, K. and Brant, R. (1988), A Bayesian Approach to Outlier Detection and Residual Analysis, Biometrika, Vol. 75, pp. 651-659.

Cloud, K. and Huber, M. (2018), Fast Perfect Simulation of Vervaat Perpetuities, Journal of Complexity, Vol. 42, pp. 19-30.

Cochran, W.G. (1977), Sampling techniques (Third ed.), Wiley.

Cook, R.D., Holschuh N., and Weisberg S. (1982). A note on an alternative outlier model, Journal of the Royal Statistical Society: Series B (Methodological), Vol. 44, pp. 370-376.

Corbellini A., Riani M. and Atkinson A.C. (2015), Discussion of the paper 'Multivariate Functional Outlier Detection' by Hubert, Rousseeuw and Segaert, Statistical Methods and Applications.

Croux C. and Rousseeuw P.J. (1992), Time-efficient algorithms for two highly robust estimators of scale, in Computational Statistics, Volume 1, eds. Y . Dodge and J. Whittaker, Heidelberg: Physika-Verlag, 41 1-428.

Croux, C., Dhaene G., and Hoorelbeke D. (2003), Robust standard errors for robust estimators. Technical report, Dept. of Applied Economics, KU Leuven.

Das Gupta, S. (1980). Distribution of the Correlation Coefficient, in: Fienberg, S.E., Hinkley, D.V. (eds) R.A. Fisher: An Appreciation, Lecture Notes in Statistics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6079-0_3

Davies, R. (1973), Numerical inversion of a characteristic function, Biometrika, Vol. 60, pp. 415-417.

Davies, R. (1980), The distribution of a linear combination of chi-square random variables, Applied Statistics, Vol. 29, pp. 323-333.

Deoras A. (2008), http://www.mathworks.com/matlabcentral/fileexchange/21799-clickablelegend-interactive-highlighting-of-data-in-figures/content/clickableLegend.m.

Devroye, L. (2001), Simulating perpetuities, Methodology And Computing In Applied Probability, Vol. 3, Num. 1, pp. 97-115.

Devroye, L. and Fawzi, O. (2010), Simulating the Dickman distribution, Statistics and Probability Letters, Vol. 80, pp. 242-247.

Donoho, D.L. (1982), Breakdown Properties of Multivariate Location Estimators, Ph.D. dissertation, Harvard University.

Dunn, P. K. and Smyth, G. K. (2005), Series Evaluation of Tweedie Exponential Dispersion Model Densities, Statistics and Computing, Vol. 15, pp. 267–280.

Dunn, P. K. and Smyth, G. K. (2008), Series Evaluation of Tweedie Exponential Dispersion Model Densities by Fourier Inversion, Statistics and Computing, Vol. 18, pp. 73–86.

Efraimidis, P.S. and Spirakis, P.G. (2006), Weighted random sampling with a reservoir, Information Processing Letters, Vol. 97, pp. 181-185.

Ewens, W.J. and Grant, G.R. (2001), Statistical Methods in Bioinformatics, Springer Verlag.

Fill, J. A. and Huber, M. (2010), Perfect simulation of Vervaat perpetuities, Electronic Journal of Probability, Vol. 15, pp. 96-109.

Filzmoser, P., Hron, K. and Templ, M. (2018), Applied Compositional Data Analysis. Springer, Cham.

Fisher, R.A. and Yates, F. (1948), Statistical tables for biological, agricultural and medical research (3rd ed.), Oliver & Boyd, pp. 26-27.

Fog, A. (2008), Calculation Methods for Wallenius' Noncentral Hypergeometric Distribution, Communications in Statistics - Simulation and Computation, Vol. 37, pp. 258-273.

Fowlkes, E.B. and Mallows, C.L. (1983), A Method for Comparing Two Hierarchical Clusterings, Journal of the American Statistical Association, Vol. 78, pp. 553-569.

Franses and van Dijk (2000), Nonlinear Time Series Models in Empirical Finance, Cambridge: Cambridge University Press.

Friedman, J. H. (1984). A Variable Span Smoother. Tech. Rep. No. 5, Laboratory for Computational Statistics, Dept. of Statistics, Stanford Univ., California.

Friedman, J.H. (1984), A variable span scatterplot smoother. Laboratory for Computational Statistics, Stanford University, Technical Report No. 5.

Fritz H., Garcia-Escudero, L.A. and Mayo-Iscar, A. (2013), A fast algorithm for robust constrained clustering,Computational Satistics and Data Analysis, Vol. 61, pp. 124-136.

Gabriel, K.R. and Odoroff, C. (1990), Biplots in biomedical research, Statistics in Medicine, Vol. 9, pp. 469-485.

Garcia-Escudero L.A., Mayo-Iscar, A. and Riani M. (2020). Model-based clustering with determinant-and-shape constraint, Statistics and Computing, vol. 30, pp. 1363–1380, https://link.springer.com/article/10.1007/s11222-020-09950-w

Garcia-Escudero L.A., Mayo-Iscar, A. and Riani M. (2022). Constrained parsimonious model-based clustering, Statistics and Computing, vol. 32, https://doi.org/10.1007/s11222-021-10061-3

Garcia-Escudero, L.A., Gordaliza A., Greselin F., Ingrassia S., and Mayo-Iscar A. (2016), The joint role of trimming and constraints in robust estimation for mixtures of gaussian factor analyzers, Computational Statistics & Data Analysis, Vol. 99, pp. 131-147.

Garcia-Escudero, L.A., Gordaliza A., Mayo-Iscar A., and San Martin R. (2010), Robust clusterwise linear regression through trimming, Computational Statistics and Data Analysis, Vol. 54, pp.3057-3069.

Garcia-Escudero, L.A., Gordaliza, A., Greselin, F., Ingrassia, S. and Mayo-Iscar, A. (2017), Robust estimation of mixtures of regressions with random covariates, via trimming and constraints, Statistics and Computing, Vol. 27, pp. 377-402.

Garcia-Escudero, L.A., Gordaliza, A., Matran, C. and Mayo-Iscar A., (2011), Exploring the number of groups in robust model-based clustering. Statistics and Computing, Vol. 21, pp. 585-599.

Garcia-Escudero, L.A., Gordaliza, A., Matran, C. and Mayo-Iscar, A. (2008), A General Trimming Approach to Robust Cluster Analysis. Annals of Statistics, Vol. 36, 1324-1345.

Garcia-Escudero, L.A., Gordaliza, A., San Martin, R., Van Aelst, S. and Zamar, R. (2009), Robust linear clustering, Journal of the Royal Statistical Society: Series B, Vol. 71, pp. 301-318.

Gervini, D. and Yohai, V.J. (2002), A class of robust and fully efficient regression estimators, Annals of Statistics, Vol. 30, pp. 583-616.

Gnanadesikan, R. and Kettenring, J. R. (1972), Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, 28:81–124.

Goktas, A. and Oznur, I. (2011), A comparision of the most commonly used measures of association for doubly ordered square contingency tables via simulation, Metodoloski zvezki, Vol. 8, pp. 17-37,

Goodman, L.A. and Kruskal, W.H. (1954), Measures of association for cross classifications, Journal of the American Statistical Association, Vol. 49, pp. 732-764.

Goodman, L.A. and Kruskal, W.H. (1959), Measures of association for cross classifications II: Further Discussion and References, Journal of the American Statistical Association, Vol. 54, pp. 123-163.

Goodman, L.A. and Kruskal, W.H. (1963), Measures of association for cross classifications III: Approximate Sampling Theory, Journal of the American Statistical Association, Vol. 58, pp. 310-364.

Goodman, L.A. and Kruskal, W.H. (1972), Measures of association for cross classifications IV: Simplification of Asymptotic Variances, Journal of the American Statistical Association, Vol. 67, pp. 415-421.

Gower, J. C. (1971), A general coefficient of similarity and some of its properties, Biometrics, pp. 857-871.

Grane', A., and Romera R. (2018), On Visualizing Mixed-Type Data: A Joint Metric Approach to Profile Construction and Outlier Detection, Sociological Methods & Research, Vol. 47, pp. 207-239

Greenacre, M.J. (1993), Correspondence Analysis in Practice, London, Academic Press.

Greenacre, M.J. (1993), Biplots in correspondence Analysis, Journal of Applied Statistics, Vol. 20, pp. 251-269.

Greene W.H. (1987), Econometric Analysis, Prentice Hall..

Grossi, L. and Nan, F. (2019), Robust forecasting of electricity prices: simulations, models and the impact of renewable sources, Technological Forecasting & Social Change, Vol. 141, pp. 305-318. https://doi.org/10.1016/j.techfore.2019.01.006

Gumedze, F.N. (2019), Use of likelihood ratio tests to detect outliers under the variance shift outlier model, Journal of Applied Statistics, Vol. 46, pp. 598-620.

Hampel, F.R., Rousseeuw, P.J. and Ronchetti E. (1981), The Change-of-Variance Curve and Optimal Redescending M-Estimators, Journal of the American Statistical Association, Vol. 76, pp. 643-648

Harveille, D.A. (1997), Matrix Algebra from a statistician's perspective, Springer.

Hastie, T., and Tibshirani, R. (1986), Generalized Additive Models (with discussion), Statistical Science, Vol 1, pp. 297-318

Hentschke, H. and Stuttgen, M. (2011), Comuputation of measures of effect size for neuroscience data sets, European Journal of Neuroscience, Vol. 34, pp. 1887-1894.

Hentschke, H. and Stuttgen, M. (2015), Measures of Effect Size Toolbox Version 1.4..

Heston, S. (1993), A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, Vol. 6, No. 2.

Hinkley D.V. (1975), On Power Transformations to Symmetry, Biometrika, Vol. 62, pp.101-111.

Hoaglin, D.C., Mosteller, F., Tukey, J.W. (1982), Understanding Robust and Exploratory Data Analysis, Wiley, New York.

Hollander, M, Wolfe, D.A., Chicken, E. (2014), Nonparametric Statistical Methods, Third edition, Wiley,

Hougaard, P. (1986), Survival models for heterogeneous populations derived from stable distributions, Biometrika, Vol. 73, pp. 387-396.

Hougaard, P., Lee M.T. and Whitmore, G.A. (1997), Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics, Vol. 53, pp. 1225-1238.

Huber, P.J. (1981), Robust Statistics, Wiley.

Huber, P.J. and Ronchetti, E.M. (2009), Robust Statistics, 2nd Edition, Wiley.

Hubert L. and Arabie P. (1985), Comparing Partitions, Journal of Classification, Vol. 2, pp. 193-218.

Hubert M. and Vandervierenb E. (2008), An adjusted boxplot for skewed distributions, Computational Statistics and Data Analysis, Vol. 52, pp. 5186-5201.

Insolia, L., F. Chiaromonte, and M. Riani (2020a). A Robust Estimation Approach for Mean-Shift and Variance-Inflation Outliers. Festschrift in Honor of R. Dennis Cook pp 17–41.

Insolia, L., Perrotta, D. (2023), Tk-Merge: Computationally Efficient Robust Clustering Under General Assumptions. Advances in Intelligent Systems and Computing, vol 1433. Springer, Cham.

Johnson D.B. and Mizoguchi T. (1978), Selecting the Kth Element in X + Y and X1 + X2 + ... + Xm, SIAM Journal of Computing, Vol. 7, pp. 147-153.

Jorgensen, B. (1987), Exponential dispersion models, Journal of the Royal Statistical Society, Series B, Vol.49, pp. 127-162.

Juan J. and Prieto F.J. (1995), Journal of Computational and Graphical Statistics, Vol. 4, pp. 319-334.

Knuth, D. (2005). Generating All Combinations and Partitions. The Art of Computer Programming, Vol. 4, Fascicle 3. Reading, Mass., Addison-Wesley.

Knuth, D. E. (1997). The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third ed. Addison-Wesley..

Knuth, D.E. (1969), The Art of Computer Programming volume 2, Seminumerical algorithms, Reading, MA: Addison-Wesley, pp. 124-125.

Knuth, D.E. (1997), The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition Addison-Wesley, pp. 10-26.

Koller, M. and W. A. Stahel (2011), Sharpening wald-type inference in robust regression for small samples, Computational Statistics & Data Analysis, Vol. 55, pp. 2504-2515.

Koop G. (2003), Bayesian Econometrics, Wiley, New York.

L'Ecuyer, P. (1988), Efficient and Portable Combined Random Number Generators, Communications of the ACM, Vol. 31, pp. 742-751.

Lamport, L. (1994), LATEX: a document preparation system: user's guide and reference manual. Addison-Wesley Longman Publishing Co., Inc., USA.

Lehmer, D. H. (1964). The machine tools of combinatorics. In E. F. Beckenbach (Ed.), Applied Combinatorial Mathematics, pp. 5-31. New York, Wiley.

Liebetrau, A.M. (1983), Measures of Association, Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-004, Newbury Park, CA: Sage.

Lin, C.Y., Yang, M.C. (2009), Improved p-value tests for comparing two independent binomial proportions, Communications in Statistics-Simulation and Computation, Vol. 38, pp.78-91.

Maitra, R. and Melnykov, V. (2010), Simulating data to study performance of finite mixture modeling and clustering algorithms, The Journal of Computational and Graphical Statistics, Vol. 19, pp. 354-376.

Mancino, M.E., Recchioni, M.C., Sanfelici, S. (2017), Fourier-Malliavin Volatility Estimation. Theory and Practice, Springer Briefs in Quantitative Finance, Springer.

Mardia, K. and Kent, J. and Bibby, J. (1979), Multivariate Analysis, Academic Press, New York.

Mardia, K.V., J.T. Kent, and J.M. Bibby (1979), Multivariate Analysis, Academic Press, London, p. 140..

Maronna, R.A. and Yohai, V.J. (1995), The behavior of the Stahel-Donoho robust multivariate estimator, Journal of the American Statistical Association, Vol. 90, pp. 329-341.

Maronna, R.A., Martin D. and Yohai V.J. (2006), Robust Statistics, Theory and Methods, Wiley, New York.

Maronna, R.A., and Yohai V.J. (2010), Correcting MM estimates for fat data sets, Computational Statistics and Data Analysis, Vol. 54, pp. 3168-3173.

Matsumoto, M. and Nishimura, T. (2000), Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator, ACM Transactions on Modeling and Computer Simulation, Vol. 8, pp. 3-30.

Melnykov, V. (2016), Merging Mixture Components for Clustering Through Pairwise Overlap, Journal of Computational and Graphical Statistics, Vol. 25, pp. 66-90.

Melnykov, V., Chen, W.-C. and Maitra, R. (2012), MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms, Journal of Statistical Software, Vol. 51, pp. 1-25.

Melnykov, V., Michael, S. (2020), Clustering Large Datasets by Merging K-Means Solutions, Journal of Classification, Vol. 37, pp. 97–123, https://doi.org/10.1007/s00357-019-09314-8

Milioli, M.A., Riani, M., Zani, S. (2019), Introduzione all'analisi dei dati statistici (Quarta edizione ampliata).

Morton, B.B. and Benedetti, J.K. (1977), Sampling Behavior of Tests for Correlation in Two-Way Contingency Tables, Journal of the American Statistical Association, Vol. 72, pp. 309-315.

Parlett, B.N. and Reinsch, C. (1969), Balancing a matrix for calculation of eigenvalues and eigenvectors, Numerische Mathematik, Vol. 13, pp. 293-304.

Parlett, B.N. and Reinsch, C. (1971), Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors, in Bauer, F.L. Eds, Handbook for Automatic Computation, Vol. 2, pp. 315-326, Springer.

Patefield, M. (1981), Algorithm AS 159: An Efficient Method of Generating RXC Tables with Given Row and Column Totals, Applied Statistics, Vol. 30, pp. 91-97.

Read, T.R.C. and Cressie, N.A.C. (1988), Goodness of Fit Statistics for Discrete Multivariate Data, Springer Verlag.

Rencher A.C. (2002), Methods of Multivariate Analysis, 2nd edition, Wiley, New York, pp. 280-284.

Riani M. and Atkinson A.C. (2010), Robust Model Selection with Flexible Trimming, Computational Statistics and Data Analysis, Vol. 54, p. 3300-3312.

Riani M. and Atkinson A.C. and Corbellini A. (2023), Robust Transformations for Multiple Regression via Additivity and Variance Stabilization, submitted.

Riani, M, Atkinson A.C., Torti, F., Corbellini A. (2023), Robust Correspondence Analysis, Journal of the Royal Statistical Society Series C: Applied Statistics, Vol. 71, pp. 1381–1401, https://doi.org/10.1111/rssc.12580

Riani, M. Atkinson, A.C., Corbellini A. and Perrotta A. (2020), Robust Regression with Density Power Divergence: Theory, Comparisons and Data Analysis, Entropy, Vol. 22, 399. https://www.mdpi.com/1099-4300/22/4/399

Riani, M. and Atkinson, A.C. (2007), Fast calibrations of the forward search for testing multiple outliers in regression, Advances in Data Analysis and Classification, Vol. 1, pp. 123-141.

Riani, M., Atkinson, A.C. and Cerioli, A. (2009), Finding an unknown number of multivariate outliers, Journal of the Royal Statistical Society Series B, Vol. 71, pp. 201-221.

Riani, M., Cerioli, A. and Torti, F. (2014), On consistency factors and efficiency of robust S-estimators, TEST, Vol. 23, pp. 356-387, http://dx.doi.org/10.1007/s11749-014-0357-7

Riani, M., Cerioli, A., Atkinson, A.C. and Perrotta, D. (2014), Monitoring Robust Regression, Electronic Journal of Statistics, Vol. 8, pp. 646-677.

Riani, M., Cerioli, A., Atkinson, A.C., Perrotta, D. and Torti, F. (2008), Fitting Mixtures of Regression Lines with the Forward Search, in: Mining Massive Data Sets for Security, F. Fogelman-Soulie et al. Eds., pp. 271-286, IOS Press.

Riani, M., Cerioli, A., Perrotta, D. and Torti, F. (2015), Simulating mixtures of multivariate data with fixed cluster overlap in FSDA, Advances in data analysis and classification, Vol. 9, pp. 461-481.

Riani, M., Cerioli, A., Perrotta, D. and Torti, F. (2015), Simulating mixtures of multivariate data with fixed cluster overlap in FSDA, Advances in data analysis and classification, Vol. 9, pp. 461-481. https://doi.org/10.1007/s11634-015-0223-9

Riani, M., Corbellini, A. and Atkinson, A.C. (2018), Very Robust Bayesian Regression for Fraud Detection, International Statistical Review, http://dx.doi.org/10.1111/insr.12247

Riani, M., Perrotta, D. and Cerioli, A. (2015), The Forward Search for Very Large Datasets, Journal of Statistical Software

Riani, M., Zani S. (1997). An iterative method for the detection of multivariate outliers, Metron, Vol. LV, pp. 101-117.

Riordan, J. (1958), An Introduction to Combinatorial Analysis, Wiley & Sons, New York.

Rocke D.M. (1996), Robustness properties of S-estimators of multivariate location and shape in high dimension, The Annals of Statistics, Vol. 24, pp. 1327-1345.

Rousseeuw P.J. and Croux C., (1993), Alternatives to the median absolute deviation, Journal of American Statistical Association, Vol. 88, pp. 1273-1283

Rousseeuw P.J., Leroy A.M. (1987), Robust regression and outlier detection, Wiley.

Rousseeuw, P.J. (1984), Least Median of Squares Regression, Journal of the American Statistical Association, Vol. 79, pp. 871-881.

Rousseeuw, P.J. and Leroy A.M. (1987), Robust regression and outlier detection, Wiley New York.

Rousseeuw, P.J. and Van Driessen, K. (1999), A fast algorithm for the minimum covariance determinant estimator, Technometrics, 41:212-223.

Rousseeuw, P.J., Perrotta D., Riani M. and Hubert, M. (2018), Robust Monitoring of Many Time Series with Application to Fraud Detection, Econometrics and Statistics.

Rudas, T. (1986), A Monte Carlo Comparision of Small Sample Behaviour of The Pearson, the Likelihood Ratio and the Cressie-Read Statistics, Journal Statistcal Computation and Simulation, Vol. 24, pp. 107-120.

SAS documentation (2009), See http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf, pp. 1738-1740.

Salibian-Barrera, M., Willems, G. and Zamar, R.H. (2008), The fast-tau estimator for regression, Journal of Computational and Graphical Statistics, Vol. 17, pp. 659-682..

Salini S., Cerioli A., Laurini F. and Riani M. (2014), Reliable Robust Regression Diagnostics, International Statistical Review, Vol. 84, pp. 99-127.

Salini, S., Laurini, F., Morelli, G., Riani M. and Cerioli A. (2022), Covariance matrices of S robust regression estimators, Journal of Statistical Computation and Simulation, Vol. 92, pp. 724-747, https://doi.org/10.1080/00949655.2021.1972300

Sanfelici, S., Toscano, G. (2024), The Fourier-Malliavin Volatility (FMVol) MATLAB toolbox, available on ArXiv.

Schafer, J.L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall.

Silverman, B.W. (1998), Density Estimation for Statistics and Data Analysis, Chapman & Hall/CRC, London.

Simon, G. (1978), Alternative analysis for the singly ordered contingency table, Journal of the American Statistical Association, Vol. 69, pp. 971-976.

Smithson, M.J. (2003), Confidence Intervals, Quantitative Applications in the Social Sciences Series, No. 140. Thousand Oaks, CA: Sage.

Stahel, W.A. (1981), Breakdown of covariance estimators, Research Report 31, Fachgruppe for Statistik, E.T.H. Zurich, Switzerland.

Steiger, J.H., and Fouladi, R.T. (1997), Noncentrality interval estimation and the evaluation of statistical models. In Harlow, L.L.,

Suissa, S. and Shuster, J.J. (1985), Exact Unconditional Sample Sizes for the 2x2 Binomial Trial, Journal of the Royal Statistical Society, Ser. A, Vol. 148, pp. 317-327.

Takacs, L. (1955), On stochastic processes connected with certain physical recording apparatuses. Acta Mathematica Academiae Scientificarum Hungarica, Vol. 6, pp 363-379.

Thompson, R. (1985), A note on restricted maximum likelihood estimation with an alternative outlier model, Journal of the Royal Statistical Society: Series B (Methodological), Vol. 47, pp. 53-55.

Tibshirani R. (1987), Estimating optimal transformations for regression, Journal of the American Statistical Association, Vol. 83, 394-405.

Torti F., Perrotta D., Riani, M. and Cerioli A. (2019). Assessing Robust Methodologies for Clustering Linear Regression Data, Advances in Data Analysis and Classification, Vol. 13, pp. 227–257, https://doi.org/10.1007/s11634-018-0331-4

Tufte E.R. (1983), The visual display of quantitative information, Graphics Press, Cheshire.

Tweedie, M. C. K. (1984), An index which distinguishes between some important exponential families, in Statistics: Applications and New Directions, Proceedings of the Indian Statistical Institute Golden Jubilee International Conference (J.K. Ghosh and J. Roy, eds.), Indian Statistical Institute, Calcutta, pp. 579-604.

Urbano, L.-S., van de Velden, M. and Kiers, H.A.L. (2009), CAR: A MATLAB Package to Compute Correspondence Analysis with Rotations, Journal of Statistical Software, Vol. 31.

Van Aelst, S. and Wang, X. and Zamar, R. and Zhu, R. (2006), Linear Grouping Using Orthogonal Regression, Computational Statistics and Data Analysis, Vol. 50, pp. 1287-1312.

Wand, M.P. and Marron, J.S. and Ruppert, D. (1991), Transformations in density estimation, Journal of the American Statistical Association, 86(414), 343-353.

Wang D. and Murphy M. (2005), Identifying nonlinear relationships regression using the ACE algorithm, Journal of Applied Statistics, Vol. 32, pp. 243-258.

Wong, C.K. and Easton, M.C. (1980), An Efficient Method for Weighted Sampling Without Replacement, SIAM Journal of Computing, Vol. 9, pp. 111-113.

Wong, C.K. and M.C. Easton (1980) An Efficient Method for Weighted Sampling Without Replacement, SIAM Journal of Computing, 9(1):111-113.

Yeo, I.K and Johnson, R. (2000), A new family of power transformations to improve normality or symmetry, Biometrika, Vol. 87, pp. 954-959.

Yohai V.J. and Zamar R.H. (1988), High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale, Journal of the American Statistical Association, Vol. 83, pp. 406-413..

Yohai V.J., Zamar R.H. (1997) Optimal locally robust M-estimates of regression. Journal of Planning and Statistical Inference, Vol. 64, pp. 309-323.

Zani, S., Riani M. and Cerioli A. (1998), Robust bivariate boxplots and multiple outlier detection, Computational Statistics and Data Analysis, Vol. 28, pp. 257-270.

Zellner, A. (1971), An introduction to Bayesian Inference in Econometrics, Wiley.


This page has been automatically generated by our routine publishBibliography