This function makes use of subroutine smth.
 
 The syntax of $smth$ is $[smo] = smth(x,y,w,span,cross)$. $x$, $y$ and
 $w$ are 3 vectors of length $n$ containing respectively the $x$
 coordinates, the $y$ coordinates and the weights. Input parameter $span$ is
 a scalar in the interval (0 1] which defines the length of the elements
 in the local regressions.
 
 More precisely, if $span$ is in (0 1), the length of elements in the
 local regressions is $m*2+1$, where $m$ is defined as the $\max([(n
 \times span)/2],1)$ to ensure that minimum length of the local
 regression is 3. Symbol $[ \cdot ]$ denotes the integer part.
 
 
 Parameter $cross$ is a Boolean scalar. If it is set to true, it specifies
 that, to compute the local regression centered on unit $i$, unit $i$ must
 be deleted. Therefore, for example, 
[
1] if $m$ is 3 and $cross$ is true, the
 smoothed value for observation $i$ uses a local regression with $x$
 coordinates $(x(i-1), x(i+1))$, $y$ coordinates $(y(i-1), y(i+1))$ and
 $w$ coordinates  $(w(i-1), w(i+1))$, $i=2, \ldots, n-1$. The smoothed
 values for observation 1 is $y(2)$ and the smoothed value for observation
 $n$ is $y(n-1)$. 
 
[
2] If $m$ is 3 and $cross$ is false, the smoothed value for
 observations $i$ is based on a local regression with $x$ coordinates
 $(x(i-1), x(i), x(i+1))$, $y$ coordinates $(y(i-1), y(i), y(i+1))$ and
 $w$ coordinates  $(w(i-1), w(1), w(i+1))$, $i=2, \ldots, n-1$. The
 smoothed values for observation 1 uses a local regression based on
 $(x(1), x(2))$, $(y(1), y(2))$, and  $(w(1), w(2))$ while the smoothed
 value for observation $n$ uses a local regression based on $(x(n-1),
 x(n))$, $(y(n-1), y(n))$, and $(w(n-1), w(n))$. 
 
[
3] If $m=5$ and $cross$ is true, the smoothed value for observations $i$
 uses a local regression based on observations $(i-2), (i-1), (i+1),
 (i+2)$, for $i=3, \ldots, n-2$. The smoothed values for observation 1
 uses observations 2 and 3, the smoothed value for observations 2 uses
 observations 1, 3 and 4 ... 
 
[
4] If $m$ is 5 and $cross$ is false, the
 smoothed value for observations $i$ uses a local regression based on
 observations $(i-2), (i-1), i, (i+1), (i+2)$, for $i=3, \ldots, n-2$. 
 The smoothed values for observation 1 uses observations 1, 2 and 3, the
 smoothed value for observations 2 uses observations 1, 2, 3 and 4 ...