FM_int_volvol

FM_int_volvol computes the integrated volatility of volatility of a diffusion process via the Fourier-Malliavin estimator

Syntax

  • VV_int=FM_int_volvol(x,t,T)example
  • VV_int=FM_int_volvol(x,t,T,Name,Value)example

Description

example

VV_int =FM_int_volvol(x, t, T) Example of call of FM_int_volvol with default values of N and M.

example

VV_int =FM_int_volvol(x, t, T, Name, Value) Example of call of FM_int_volvol with custom choices of N and M.

Examples

expand all

  • Example of call of FM_int_volvol with default values of N and M.
  • The following example estimates the integrated volatility of volatility of a random process following the Heston model from a discrete sample. The Heston model assumes that the spot variance follows a Cox-Ingersoll-Ross model.

    % Heston model simulation
    T=1;  
    n=23400;  
    parameters=[0,0.8,10,3.25];
    rho=-0.3;
    x0=log(100); 
    V0=0.8;
    [x,V,t] = Heston1D(T,n,parameters,rho,x0,V0);
    % Integrated volatility of volatility estimation
    VV_int = FM_int_volvol(x,t,T);

  • Example of call of FM_int_volvol with custom choices of N and M.
  • The following example estimates the integrated volatility of volatility of a random process following the Heston model from a discrete sample. The Heston model assumes that the spot variance follows a Cox-Ingersoll-Ross model.

    % Heston model simulation
    T=1; 
    n=23400; % number of observations simulated in one trajectory 
    parameters=[0,0.8,10,3.25];
    rho=-0.3;
    x0=log(100); 
    V0=0.8;
    [x,V,t]=Heston1D(T,n,parameters,rho,x0,V0);
    % Integrated volatility of volatility estimation 
    VV_int = FM_int_volvol(x,t,T,'N',11200, 'M', 50);

    Input Arguments

    expand all

    x — Observed process values. Vector.

    Row or column vector containing the observed values.

    Data Types: single| double

    t — Observation times. Vector.

    Row or column vector with the same length of x containing the observation times.

    Data Types: single| double

    T — Estimation horizon. Scalar.

    Data Types: single| double

    Name-Value Pair Arguments

    Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

    Example: 'N',400 , 'M',20

    N —Cutting frequency.scalar.

    If N is not specified, it is set equal to floor((length(x)-1)/2).

    Example: 'N',400

    Data Types: single | double

    M —Cutting frequency.scalar.

    If M is not specified, it is set equal to floor(floor((length(x)-1)/2)^0.4).

    Example: 'M',20

    Data Types: single | double Data Types - single | double

    Output Arguments

    expand all

    VV_int —Integrated volatility of volatility. Scalar

    Value of the integrated volatility of volatility.

    More About

    expand all

    Additional Details

    We assume that the vectors x contains discrete observations from a diffusion process $x$ following the Ito stochastic differential equation $$dx(t)= \sigma(t) \ dW(t) + b(t) \ dt,$$ $$d\sigma^2(t)= \gamma(t) \ dZ(t) + a(t) \ dt,$$ where $W$ and $Z$ are two Brownian motions defined on the filtered probability space $(\Omega, (\mathcal{F}_t)_{t \in [0,T]}, P)$, with correlation $\rho$, while $\sigma, \gamma, b$ and $a$ are random processes, adapted to $\mathcal{F}_t$.

    See the References for further mathematical details.

    The integrated volatility of volatility on $[0,T]$ is defined as $$ IVV_{[0,T]}:= \langle \sigma^2 ,\sigma^2 \rangle_T =\int_0^T\gamma^2(s)ds.$$ For any positive integer $n$, let $\mathcal{S}_{n}:=\{ 0=t_{0}\leq \cdots \leq t_{n}=T \}$ be the observation times. Moreover, let $\delta_l(x):= x(t_{l+1})-x(t_l)$ be the increments of $x$.

    The Fourier estimator of the integrated volatility of volatility on $[0,T]$ is given by $$T c_0(V_{{n},N,M})={T^2\over {2M+1}} \sum_{|k|\leq M} c_{k}(d\sigma_{n,N})c_{-k}(d\sigma_{n,N}),$$ where: $$c_k(d\sigma_{n,N})= i k \frac{2\pi}{T} c_k(\sigma_{n,N}), \quad c_k(\sigma_{{n},N})={T\over {2N+1}} \sum_{|s|\leq N} c_{s}(dx_{n})c_{k-s}(dx_{n}),$$ $$c_k(dx_{n})= {1\over {T}} \sum_{l=0}^{n-1} e^{-{\rm i}\frac{2\pi}{T}kt_l}\delta_{l}(x).$$

    References

    Mancino, M.E., Recchioni, M.C., Sanfelici, S. (2017), Fourier-Malliavin Volatility Estimation. Theory and Practice, "Springer Briefs in Quantitative Finance", Springer.

    Sanfelici, S., Toscano, G. (2024), The Fourier-Malliavin Volatility (FMVol) MATLAB toolbox, available on ArXiv.

    This page has been automatically generated by our routine publishFS