We assume that the vectors x contains discrete observations from a diffusion
process following the Ito stochastic differential equation
dx(t)= \sigma(t) \ dW(t) + b(t) \ dt,
d\sigma^2(t)= \gamma(t) \ dZ(t) + a(t) \ dt,
where W and Z are two Brownian motions defined on the filtered probability space
(\Omega, (\mathcal{F}_t)_{t \in [0,T]}, P), with correlation \rho, while
\sigma, \gamma, b and a are random processes, adapted to \mathcal{F}_t.
See the References for further mathematical details.
The spot leverage at time t \in [0,T] is defined as
B(t):=\frac{d\langle x,\sigma^2 \rangle_t}{dt}=\rho\sigma(t)\gamma(t).
For any positive integer n, let \mathcal{S}_{n}:=\{ 0=t_{0}\leq \cdots
\leq t_{n}=T \} be the observation times. Moreover, let \delta_l(x):=
x(t_{l+1})-x(t_l) be the increments of x.
The Fourier estimator of the spot leverage at time t \in [0,T] is
given by
\widehat B_{n,N,M,L}(\tau)= \sum_{|k|\leq L} \left(1-{|k|\over
L}\right)c_k(B_{n,N,M}) \, e^{{\rm i}\frac{2\pi}{T}k\tau},
where:
c_k(B_{n,N,M})= {T \over {2M+1}} \sum_{|s|\leq M} c_s(d\sigma_{{n},N})c_{k-s}(dx_{n}),
c_k(d\sigma_{{n},N})={\rm i} \, k\, \frac{2\pi}{T}
c_k(\sigma_{{n},N}), \quad c_k(\sigma_{n,N})={T\over {2N+1}} \sum_{|s|\leq N} c_{s}(dx_{n})c_{k-s}(dx_{n}),
c_k(dx_{n}):= {1\over {T}} \sum_{l=0}^{n-1} e^{-{\rm i}\frac{2\pi}{T}kt_l}\delta_{l}(x).