dempk performs a merging of components found by tkmeans

The function dempk performs either a hierarchical merging of the k components found by tkmeans (using the pairwise overlap values between them and giving g clusters), or if g is a decimal number between 0 and 1 it performs the merging phase according to the threshold g (the same algorithm as overlapmap).

close all % Specify k cluster in v dimensions with n obs k = 10; v = 2; n = 5000; % Generate homogeneous and spherical clusters rng(100, 'twister'); out = MixSim(k, v, 'sph', true, 'hom', true, 'int', [0 10], 'Display', 'off', 'BarOmega', 0.05, 'Display','off'); % Simulating data [X, id] = simdataset(n, out.Pi, out.Mu, out.S); % Plotting data gscatter(X(:,1), X(:,2), id); str = sprintf('Simulated data with %d groups in %d dimensions and %d units', k, v, n); title(str,'Interpreter','Latex'); % merging algorithm based on hierarchical clustering g = 3; DEMP = dempk(X, k*5, g, 'plots', 'contourf'); % merging algorithm based on the threshold value omega star g = 0.01; DEMP2 = dempk(X, k*5, g, 'plots', 'contour'); cascade;

Total estimated time to complete trimmed k means: 35.17 seconds ------------------------------ Warning: Number of subsets without convergence equal to 36.6667% Total estimated time to complete trimmed k means: 1.87 seconds ------------------------------ Warning: Number of subsets without convergence equal to 38.6667%

close all % Specify k cluster in v dimensions with n obs g = 3; v = 2; n = 5000; % null trimming and noise level alpha0 = 0; % restriction factor restr = 30; % Maximum overlap maxOm = 0.005; % Generate heterogeneous and elliptical clusters rng(500, 'twister'); out = MixSim(g, v, 'sph', false, 'restrfactor', restr, 'int', [0 10], ... 'Display', 'off', 'MaxOmega', maxOm, 'Display','off'); % Simulating data [X, id] = simdataset(n, out.Pi, out.Mu, out.S); % Plotting data gg = gscatter(X(:,1), X(:,2), id); str = sprintf('Simulated data with %d groups in %d dimensions and %d \nunits, with restriction factor %d and maximum overlap %.2f', ... g, v, n, restr, maxOm); title(str,'Interpreter','Latex', 'fontsize', 12); set(findobj(gg), 'MarkerSize',10); legend1 = legend(gca,'show'); set(legend1,'LineWidth',1,'Interpreter','latex','FontSize',14, 'Location', 'northwest') % number of components searched by tkmeans k = g * 6; % additional input for tkmeans tkmeansOpt = struct; tkmeansOpt.reftol = 0.0001; tkmeansOpt.msg = 1; tkmplots = struct; tkmplots.type = 'contourf'; tkmplots.cmap = [0.3 0.2 0.4; 0.4 0.5 0.5; 0.1 0.7 0.9; 0.5 0.3 0.8; 1 1 1]; tkmeansOpt.plots = tkmplots; tkmeansOpt.nomes = 0; % saving tkmeans output tkmeansOut = 1; DEMP = dempk(X, k, g, 'tkmeansOpt', tkmeansOpt, 'plots', 'ellipse'); cascade;

Total estimated time to complete trimmed k means: 0.88 seconds ------------------------------ Warning: Number of subsets without convergence equal to 21.6667%

close all % Specify k cluster in v dimensions with n obs g = 3; v = 2; n = 5000; % null trimming and noise level alpha0 = 0; % restriction factor restr = 30; % Maximum overlap maxOm = 0.005; % Generate heterogeneous and elliptical clusters rng(500, 'twister'); out = MixSim(g, v, 'sph', false, 'restrfactor', restr, 'int', [0 10], ... 'Display', 'off', 'MaxOmega', maxOm, 'Display','off'); % Simulating data [X, id] = simdataset(n, out.Pi, out.Mu, out.S); % Plotting data gg = gscatter(X(:,1), X(:,2), id); str = sprintf('Simulated data with %d groups in %d dimensions and %d \nunits, with restriction factor %d and maximum overlap %.2f', ... g, v, n, restr, maxOm); title(str,'Interpreter','Latex', 'fontsize', 12); set(findobj(gg), 'MarkerSize',10); legend1 = legend(gca,'Group 1','Group 2','Group 3'); set(legend1,'LineWidth',1,'Interpreter','latex','FontSize',12, 'Location', 'northwest') % number of components searched by tkmeans disp('RUNNING TKMEANS WITH 18 COMPONENTS; THEN MERGING WITH dempk'); k = g * 6; % additional input for clusterdata (i.e. hierOpt) linkagearg = 'weights'; DEMP = dempk(X, k, g, 'linkagearg', linkagearg, 'plots', 'ellipse'); cascade;

RUNNING TKMEANS WITH 18 COMPONENTS; THEN MERGING WITH dempk Total estimated time to complete trimmed k means: 0.87 seconds ------------------------------ Warning: Number of subsets without convergence equal to 37.3333%

close all % Specify k cluster in v dimensions with n obs g = 3; v = 2; n = 5000; % 10 percent trimming and uniform noise alpha = 0.1; noise = alpha*n; % restriction factor restr = 30; % Maximum overlap maxOm = 0.005; % Generate heterogeneous and elliptical clusters rng(500, 'twister'); out = MixSim(g, v, 'sph', false, 'restrfactor', restr, 'int', [0 10], ... 'Display', 'off', 'MaxOmega', maxOm, 'Display','off'); % Simulating data [X,id] = simdataset(n, out.Pi, out.Mu, out.S, 'noiseunits', noise); % Plotting data gg = gscatter(X(:,1), X(:,2), id); str = sprintf('Simulating %d groups in %d dimensions and %d units with %d%s \nuniform noise, setting a restriction factor %d and maximum overlap %.2f', ... g, v, n, alpha*100, '\%', restr, maxOm); title(str,'Interpreter','Latex', 'fontsize', 10); set(findobj(gg), 'MarkerSize',10); legend1 = legend(gca,'Outliers','Group 1','Group 2','Group 3'); set(legend1,'LineWidth',1,'Interpreter','latex','FontSize',12, 'Location', 'northwest') % fixing the number of components searched by tkmeans k = g * 6; % dempk with hierarchical merging and trimming equal to the level of noise DEMP = dempk(X, k, g, 'alpha', alpha, 'plots', 'contourf'); % dempk with a threshold value and trimming equal to the level of noise g = 0.025; DEMP = dempk(X, k, g, 'alpha', alpha, 'plots', 'contourf'); cascade;

Total estimated time to complete trimmed k means: 11.21 seconds ------------------------------ Warning: Number of subsets without convergence equal to 38% Total estimated time to complete trimmed k means: 12.77 seconds ------------------------------ Warning: Number of subsets without convergence equal to 36%

close all Y = load('M5data.txt'); id = Y(:,3); Y = Y(:, 1:2); G = max(id); n = length(Y); noise = length(Y(id==0, 1)); v = 2; % dimensions id(id==0) = -1; % changing noise label gg = gscatter(Y(:,1), Y(:,2), id); str = sprintf('M5 data set with %d groups in %d dimensions and \n%d units where %d%s of them are noise', G, v, n, noise/n*100, '\%'); title(str,'Interpreter','Latex', 'fontsize', 12); set(findobj(gg), 'MarkerSize',12); legend1 = legend(gca,'Outliers','Group 1','Group 2','Group 3'); set(legend1,'LineWidth',1,'Interpreter','latex','FontSize',12, 'Location', 'northwest') % number of components to search k = G*5; % null trimming and noise level alpha0 = 0; % mimimum overlap cut-off value between pair of merged components omegaStar = 0.045; DEMP = dempk(Y, k, G, 'alpha', alpha0, 'tkmeansOut', 1, 'plots', 1); % setting alpha equal to noise level (usually not appropriate) alpha = noise/n; DEMP2 = dempk(Y, k, G, 'alpha', alpha, 'tkmeansOut', 1, 'plots', 1); % setting alpha greater than the noise level (almost always appropriate) out = dempk(Y, k, G, 'alpha', alpha+0.04, 'tkmeansOut', 1, 'plots', 1); cascade;

Total estimated time to complete trimmed k means: 0.33 seconds ------------------------------ Warning: Number of subsets without convergence equal to 36% Total estimated time to complete trimmed k means: 4.53 seconds ------------------------------ Warning: Number of subsets without convergence equal to 39% Total estimated time to complete trimmed k means: 4.54 seconds ------------------------------ Warning: Number of subsets without convergence equal to 38.6667%

`Y`

— Input data.
Matrix.n x v data matrix. n observations and v variables. Rows of Y represent observations, and columns represent variables. Missing values (NaN's) and infinite values (Inf's) are allowed, since observations (rows) with missing or infinite values will automatically be excluded from the computations.

**
Data Types: **`single | double`

`g`

— Merging rule.
Scalar.Number of groups obtained by hierarchical merging, or threshold of the pairwise overlap values (i.e. omegaStar) if 0<g<1.

**
Data Types: **`single | double`

Specify optional comma-separated pairs of `Name,Value`

arguments.
`Name`

is the argument name and `Value`

is the corresponding value. `Name`

must appear
inside single quotes (`' '`

).
You can specify several name and value pair arguments in any order as ```
Name1,Value1,...,NameN,ValueN
```

.

```
'alpha', 0.05
```

,```
'plots', 1
```

,```
'tkmeansOpt.reftol', 0.0001
```

,```
'tkmeansOut', 1
```

,

,```
'Ysave',1
```

`alpha`

—Global trimming level.scalar.alpha is a scalar between 0 and 0.5. If alpha=0 (default) tkmeans reduces to kmeans.

**Example: **```
'alpha', 0.05
```

**Data Types: **`single | double`

`plots`

—Plot on the screen.scalar, char, | struct.- If plots=0 (default) no plot is produced.

- If plots=1, the components merged are shown using the spmplot function. In particular:

* for v=1, an histogram of the univariate data.

* for v=2, a bivariate scatterplot.

* for v>2, a scatterplot matrix.

When v>=2 plots offers the following additional features (for v=1 the behaviour is forced to be as for plots=1):

- plots='contourf' adds in the background of the bivariate scatterplots a filled contour plot. The colormap of the filled contour is based on grey levels as default.

This argument may also be inserted in a field named 'type' of a structure. In the latter case it is possible to specify the additional field 'cmap', which changes the default colors of the color map used. The field 'cmap' may be a three-column matrix of values in the range [0,1] where each row is an RGB triplet that defines one color.

Check the colormap function for additional informations.

- plots='contour' adds in the background of the bivariate scatterplots a contour plot. The colormap of the contour is based on grey levels as default. This argument may also be inserted in a field named 'type' of a structure.

In the latter case it is possible to specify the additional field 'cmap', which changes the default colors of the color map used. The field 'cmap' may be a three-column matrix of values in the range [0,1] where each row is an RGB triplet that defines one color.

Check the colormap function for additional informations.

- plots='ellipse' superimposes confidence ellipses to each group in the bivariate scatterplots. The size of the ellipse is chi2inv(0.95,2), i.e. the confidence level used by default is 95%. This argument may also be inserted in a field named 'type' of a structure. In the latter case it is possible to specify the additional field 'conflev', which specifies the confidence level to use and it is a value between 0 and 1.

- plots='boxplotb' superimposes on the bivariate scatterplots the bivariate boxplots for each group, using the boxplotb function. This argument may also be inserted in a field named 'type' of a structure.

REMARK - The labels<=0 are automatically excluded from the overlaying phase, considering them as outliers.

**Example: **```
'plots', 1
```

**Data Types: **`single | double | string`

`tkmeansOpt`

—tkmeans optional arguments.structure.Empty structure (default) or structure containing optional input arguments for tkmeans.

See tkmeans function.

**Example: **```
'tkmeansOpt.reftol', 0.0001
```

**Data Types: **`struct`

`tkmeansOut`

—Saving tkmeans output structure.scalar.It is set to 1 to save the output structure of tkmeans into the output structure of dempk. Default is 0, i.e. no saving is done.

**Example: **```
'tkmeansOut', 1
```

**Data Types: **`single | double`

`linkagearg`

—Linkage used.single linkage is the default, see the MATLAB linkage function for more general information.
**Example: **

**Data Types: **

`Ysave`

—Saving Y.scalar.Scalar that is set to 1 to request that the input matrix Y is saved into the output structure out.

Default is 0, i.e. no saving is done.

**Example: **```
'Ysave',1
```

**Data Types: **`double`

`out`

— description
StructureStructure which contains the following fields

Value | Description |
---|---|

`PairOver` |
Pairwise overlap triangular matrix (sum of misclassification probabilities) among components found by tkmeans. |

`mergID` |
Label for each unit. It is a vector with n elements which assigns each unit to one of the groups obtained according to the merging algorithm applied. REMARK - out.mergID=0 denotes trimmed units. |

`tkmeansOut` |
Output from tkmeans function. The structure is present if option tkmeansOut is set to 1. |

`Y` |
Original data matrix Y. This field is present only if option Ysave is set to 1. |

Melnykov, V., Michael, S. (2017), "Clustering large datasets by merging K-means solutions". Submitted.

Melnykov, V. (2016), Merging Mixture Components for Clustering Through Pairwise Overlap, "Journal of Computational and Graphical Statistics", Vol. 25, pp. 66-90.