moonplot

moonplot draws the Correspondence Analysis (CA) moonplot.

Syntax

Description

example

moonplot(out) moonplot with all the default options.

example

moonplot(out, Name, Value) moonplot with option changedimsign.

Examples

expand all

  • moonplot with all the default options.
  • Prepare the data.

    load('csdPerceptions')
    N=csdPerceptions;
    out=CorAna(N,'plots',0);
    moonplot(out);
    Summary
                 Singular_value     Inertia      Accounted_for    Cumulative
                 ______________    __________    _____________    __________
    
        dim_1        0.54313          0.29499         0.7751        0.7751  
        dim_2         0.2544         0.064718        0.17005       0.94514  
        dim_3        0.11339         0.012857       0.033781       0.97893  
        dim_4       0.086748        0.0075251       0.019772        0.9987  
        dim_5         0.0167       0.00027887     0.00073275       0.99943  
        dim_6       0.013467       0.00018135     0.00047651       0.99991  
        dim_7      0.0059347        3.522e-05     9.2542e-05             1  
    
    ROW POINTS
    Results for dimension: 1
                     Scores      CntrbPnt2In    CntrbDim2In
                    _________    ___________    ___________
    
        Coke         -0.24282      0.054146       0.51564  
        V             0.44798       0.14366       0.93282  
        RedBull       0.47112       0.13662       0.92437  
        LiftPlus      0.46454      0.077496       0.89889  
        DietCoke    -0.091333     0.0010171      0.021869  
        Fanta         -1.2734       0.53874       0.88102  
        Lift          -0.5004      0.033995       0.34225  
        Pepsi        -0.27373      0.014328       0.35991  
    
    Results for dimension: 2
                     Scores     CntrbPnt2In    CntrbDim2In
                    ________    ___________    ___________
    
        Coke        -0.20254      0.17171        0.35874  
        V            0.11225     0.041108       0.058562  
        RedBull      0.13203     0.048907       0.072599  
        LiftPlus     0.14636     0.035066       0.089234  
        DietCoke    -0.53782      0.16075        0.75831  
        Fanta        0.46647      0.32953        0.11823  
        Lift        -0.49767      0.15326        0.33852  
        Pepsi       -0.26164     0.059666        0.32881  
    
    COLUMN POINTS
    Results for dimension: 1
                        Scores      CntrbPnt2In    CntrbDim2In
                       _________    ___________    ___________
    
        Kids             -1.3154        0.4257       0.92133  
        Teens           0.037207     0.0008574      0.016052  
        EnjoyLife      -0.078767     0.0020558       0.05637  
        PicksYouUp       0.48853       0.10076       0.88168  
        Refreshes       -0.29457      0.017537       0.21492  
        CheersYouUp     -0.23563      0.010974       0.82623  
        Energy           0.60133       0.14373       0.81498  
        Up_to_date       0.28737      0.025084       0.87766  
        Fun             -0.92306       0.20009       0.91969  
        WhenTired        0.45377      0.066061       0.92716  
        Relax              -0.25     0.0071446       0.20238  
    
    Results for dimension: 2
                        Scores     CntrbPnt2In    CntrbDim2In
                       ________    ___________    ___________
    
        Kids            0.36814       0.15199      0.072168  
        Teens          -0.23731       0.15898       0.65297  
        EnjoyLife        -0.294       0.13054        0.7853  
        PicksYouUp      0.17611      0.059685       0.11458  
        Refreshes      -0.41976       0.16232       0.43641  
        CheersYouUp    -0.05739     0.0029674      0.049015  
        Energy          0.27479       0.13681       0.17018  
        Up_to_date     0.080252     0.0089169      0.068448  
        Fun             0.23316      0.058191      0.058679  
        WhenTired       0.12237      0.021897      0.067425  
        Relax          -0.45464        0.1077        0.6693  
    
    -----------------------------------------------------------
    Overview ROW POINTS
                      Mass       Score_1     Score_2     Inertia     CntrbPnt2In_1    CntrbPnt2In_2    CntrbDim2In_1    CntrbDim2In_2
                    ________    _________    ________    ________    _____________    _____________    _____________    _____________
    
        Coke         0.27089     -0.24282    -0.20254    0.030977       0.054146         0.17171          0.51564          0.35874   
        V            0.21116      0.44798     0.11225     0.04543        0.14366        0.041108          0.93282         0.058562   
        RedBull      0.18157      0.47112     0.13203    0.043598        0.13662        0.048907          0.92437         0.072599   
        LiftPlus     0.10594      0.46454     0.14636    0.025432       0.077496        0.035066          0.89889         0.089234   
        DietCoke    0.035968    -0.091333    -0.53782     0.01372      0.0010171         0.16075         0.021869          0.75831   
        Fanta       0.098012      -1.2734     0.46647     0.18039        0.53874         0.32953          0.88102          0.11823   
        Lift        0.040049      -0.5004    -0.49767    0.029301       0.033995         0.15326          0.34225          0.33852   
        Pepsi       0.056409     -0.27373    -0.26164    0.011744       0.014328        0.059666          0.35991          0.32881   
    
    Overview COLUMN POINTS
                         Mass       Score_1     Score_2      Inertia     CntrbPnt2In_1    CntrbPnt2In_2    CntrbDim2In_1    CntrbDim2In_2
                       ________    _________    ________    _________    _____________    _____________    _____________    _____________
    
        Kids           0.072579      -1.3154     0.36814       0.1363         0.4257          0.15199         0.92133         0.072168   
        Teens           0.18271     0.037207    -0.23731     0.015757      0.0008574          0.15898        0.016052          0.65297   
        EnjoyLife      0.097746    -0.078767      -0.294     0.010758      0.0020558          0.13054         0.05637           0.7853   
        PicksYouUp      0.12454      0.48853     0.17611     0.033712        0.10076         0.059685         0.88168          0.11458   
        Refreshes      0.059621     -0.29457    -0.41976     0.024072       0.017537          0.16232         0.21492          0.43641   
        CheersYouUp    0.058308     -0.23563    -0.05739    0.0039181       0.010974        0.0029674         0.82623         0.049015   
        Energy          0.11726      0.60133     0.27479     0.052026        0.14373          0.13681         0.81498          0.17018   
        Up_to_date     0.089603      0.28737    0.080252     0.008431       0.025084        0.0089169         0.87766         0.068448   
        Fun            0.069276     -0.92306     0.23316      0.06418        0.20009         0.058191         0.91969         0.058679   
        WhenTired      0.094641      0.45377     0.12237     0.021018       0.066061         0.021897         0.92716         0.067425   
        Relax          0.033721        -0.25    -0.45464     0.010414      0.0071446           0.1077         0.20238           0.6693   
    
    -----------------------------------------------------------
    Legend
    CntrbPnt2In = relative contribution of points to explain total Inertia of the latent dimension
                  The sum of the numbers in a column is equal to 1
    CntrbDim2In = relative contribution of latent dimension to explain total Inertia of a point
                  CntrbDim2In_1+CntrbDim2In_2+...+CntrbDim2In_K=1
    
    Click here for the graphical output of this example (link to Ro.S.A. website).

  • moonplot with option changedimsign.
  • Prepare the data.

    load mobilephone
    out=CorAna(mobilephone,'plots',0);
    % Use of option changedimsign
    moonplot(out,'changedimsign',[true false])
    Summary
                 Singular_value     Inertia      Accounted_for    Cumulative
                 ______________    __________    _____________    __________
    
        dim_1        0.47503          0.22565        0.65741       0.65741  
        dim_2        0.25226         0.063636        0.18539       0.84281  
        dim_3        0.20151         0.040605         0.1183       0.96111  
        dim_4        0.09015        0.0081271       0.023677       0.98478  
        dim_5       0.063381        0.0040172       0.011704       0.99649  
        dim_6       0.028981       0.00083991       0.002447       0.99893  
        dim_7       0.019133       0.00036609      0.0010666             1  
    
    ROW POINTS
    Results for dimension: 1
                            Scores     CntrbPnt2In    CntrbDim2In
                           ________    ___________    ___________
    
        AAPTCellularOne     0.43774      0.074997       0.58204  
        NewTel              0.70084       0.18966       0.82774  
        OneTel              0.75509       0.29334       0.67859  
        Optus              -0.36684      0.099393       0.80005  
        Orange             0.080756     0.0030053      0.069512  
        Telstra            -0.48339       0.19667       0.63237  
        VirginMobile         0.2265      0.021753       0.23553  
        Vodafone           -0.42388       0.12118        0.7573  
    
    Results for dimension: 2
                            Scores     CntrbPnt2In    CntrbDim2In
                           ________    ___________    ___________
    
        AAPTCellularOne     0.20731     0.059649         0.13055 
        NewTel             0.088109      0.01063        0.013083 
        OneTel             -0.45615      0.37961         0.24765 
        Optus              0.013396      0.00047       0.0010669 
        Orange              0.21336     0.074391         0.48523 
        Telstra            -0.27412      0.22427         0.20335 
        VirginMobile         0.3793      0.21631         0.66047 
        Vodafone            0.12041     0.034671        0.061103 
    
    COLUMN POINTS
    Results for dimension: 1
                                         Scores     CntrbPnt2In    CntrbDim2In
                                        ________    ___________    ___________
    
        Bureaucratic                     -0.2099      0.010152       0.21808  
        LowService                        0.1333     0.0044122       0.47623  
        Friendly                        -0.13344      0.003972       0.12889  
        LowPrices                       0.071087     0.0011218      0.023653  
        Fashionable                     -0.13019      0.003816      0.062038  
        UnFashionable                    0.25692      0.017084       0.55182  
        Reliable                        -0.54443      0.062682       0.91686  
        HereTodayGoneTomorrow              1.183       0.26211       0.75899  
        GoodCoverage                    -0.73321      0.097851       0.82221  
        NetworkOftenDown                  0.2291      0.016622       0.78161  
        TheBestPhones                   -0.32977      0.022425       0.81958  
        ConvenientlyLocatedStores       -0.62787      0.090006       0.91678  
        HighPrices                      -0.41233      0.029157       0.43235  
        Unreliable                       0.59274      0.082434       0.81269  
        MeetMyCommunicationNeeds        -0.37965      0.029874       0.89117  
        LeadersMobilePhoneTechnology    -0.43259      0.040952        0.9748  
        ILikeThem                       -0.24443      0.014206       0.57453  
        IHateThem                        0.27763      0.026925       0.95031  
        DonotKnowMuchAboutThem           0.82215       0.18419       0.57997  
    
    Results for dimension: 2
                                         Scores      CntrbPnt2In    CntrbDim2In
                                        _________    ___________    ___________
    
        Bureaucratic                     -0.25947      0.055008        0.33323 
        LowService                       -0.10801      0.010272        0.31265 
        Friendly                          0.29472      0.068702        0.62872 
        LowPrices                         0.33385      0.087739        0.52169 
        Fashionable                       0.39172       0.12251        0.56168 
        UnFashionable                    -0.10432     0.0099873       0.090972 
        Reliable                          -0.1167      0.010213       0.042129 
        HereTodayGoneTomorrow             -0.5778       0.22171        0.18105 
        GoodCoverage                      -0.2654      0.045464        0.10773 
        NetworkOftenDown                 0.034508     0.0013373       0.017733 
        TheBestPhones                    0.079656     0.0046398        0.04782 
        ConvenientlyLocatedStores       -0.051112      0.002115      0.0060753 
        HighPrices                       -0.26416      0.042436        0.17746 
        Unreliable                         -0.246      0.050349        0.13998 
        MeetMyCommunicationNeeds        0.0016326    1.9591e-06     1.6481e-05 
        LeadersMobilePhoneTechnology    -0.028765     0.0006421      0.0043102 
        ILikeThem                          0.1504      0.019074        0.21754 
        IHateThem                       -0.037841     0.0017737       0.017654 
        DonotKnowMuchAboutThem            0.50458       0.24602        0.21845 
    
    -----------------------------------------------------------
    Overview ROW POINTS
                             Mass      Score_1     Score_2      Inertia     CntrbPnt2In_1    CntrbPnt2In_2    CntrbDim2In_1    CntrbDim2In_2
                           ________    ________    ________    _________    _____________    _____________    _____________    _____________
    
        AAPTCellularOne    0.088319     0.43774     0.20731     0.029076       0.074997        0.059649          0.58204           0.13055  
        NewTel             0.087132     0.70084    0.088109     0.051704        0.18966         0.01063          0.82774          0.013083  
        OneTel               0.1161     0.75509    -0.45615     0.097545        0.29334         0.37961          0.67859           0.24765  
        Optus               0.16667    -0.36684    0.013396     0.028034       0.099393         0.00047          0.80005         0.0010669  
        Orange              0.10399    0.080756     0.21336    0.0097562      0.0030053        0.074391         0.069512           0.48523  
        Telstra             0.18993    -0.48339    -0.27412     0.070181        0.19667         0.22427          0.63237           0.20335  
        VirginMobile       0.095679      0.2265      0.3793     0.020841       0.021753         0.21631          0.23553           0.66047  
        Vodafone            0.15218    -0.42388     0.12041     0.036108        0.12118        0.034671           0.7573          0.061103  
    
    Overview COLUMN POINTS
                                          Mass      Score_1      Score_2      Inertia     CntrbPnt2In_1    CntrbPnt2In_2    CntrbDim2In_1    CntrbDim2In_2
                                        ________    ________    _________    _________    _____________    _____________    _____________    _____________
    
        Bureaucratic                    0.051994     -0.2099     -0.25947     0.010505       0.010152         0.055008         0.21808           0.33323  
        LowService                       0.05603      0.1333     -0.10801    0.0020907      0.0044122         0.010272         0.47623           0.31265  
        Friendly                        0.050332    -0.13344      0.29472    0.0069537       0.003972         0.068702         0.12889           0.62872  
        LowPrices                       0.050095    0.071087      0.33385     0.010702      0.0011218         0.087739        0.023653           0.52169  
        Fashionable                     0.050807    -0.13019      0.39172      0.01388       0.003816          0.12251        0.062038           0.56168  
        UnFashionable                   0.058405     0.25692     -0.10432    0.0069862       0.017084        0.0099873         0.55182          0.090972  
        Reliable                        0.047721    -0.54443      -0.1167     0.015427       0.062682         0.010213         0.91686          0.042129  
        HereTodayGoneTomorrow            0.04226       1.183      -0.5778     0.077928        0.26211          0.22171         0.75899           0.18105  
        GoodCoverage                    0.041073    -0.73321      -0.2654     0.026855       0.097851         0.045464         0.82221           0.10773  
        NetworkOftenDown                0.071462      0.2291     0.034508    0.0047988       0.016622        0.0013373         0.78161          0.017733  
        TheBestPhones                   0.046534    -0.32977     0.079656    0.0061743       0.022425        0.0046398         0.81958           0.04782  
        ConvenientlyLocatedStores       0.051519    -0.62787    -0.051112     0.022154       0.090006         0.002115         0.91678         0.0060753  
        HighPrices                      0.038699    -0.41233     -0.26416     0.015218       0.029157         0.042436         0.43235           0.17746  
        Unreliable                      0.052944     0.59274       -0.246     0.022889       0.082434         0.050349         0.81269           0.13998  
        MeetMyCommunicationNeeds        0.046771    -0.37965    0.0016326    0.0075643       0.029874       1.9591e-06         0.89117        1.6481e-05  
        LeadersMobilePhoneTechnology    0.049383    -0.43259    -0.028765      0.00948       0.040952        0.0006421          0.9748         0.0043102  
        ILikeThem                       0.053656    -0.24443       0.1504    0.0055796       0.014206         0.019074         0.57453           0.21754  
        IHateThem                       0.078822     0.27763    -0.037841    0.0063933       0.026925        0.0017737         0.95031          0.017654  
        DonotKnowMuchAboutThem          0.061491     0.82215      0.50458     0.071665        0.18419          0.24602         0.57997           0.21845  
    
    -----------------------------------------------------------
    Legend
    CntrbPnt2In = relative contribution of points to explain total Inertia of the latent dimension
                  The sum of the numbers in a column is equal to 1
    CntrbDim2In = relative contribution of latent dimension to explain total Inertia of a point
                  CntrbDim2In_1+CntrbDim2In_2+...+CntrbDim2In_K=1
    
    Click here for the graphical output of this example (link to Ro.S.A. website).

    Input Arguments

    expand all

    out — Structure containing the output of function CorAna. Structure.

    Structure containing the following fields.

    Value Description
    Lr

    cell of length $I$ containing the labels of active rows (i.e. the rows which participated to the fit).

    Lc

    cell of length $J$ containing the labels of active columns (i.e. the columns which participated to the fit).

    n

    Grand total. out.n is equal to sum(sum(out.N)).

    This is the number of observations.

    Dr

    Square matrix of size $I$ containing on the diagonal the row masses. This is matrix $D_r$.

    \[ D_r=diag(r) \]

    Dc

    Square matrix of size $J$ containing on the diagonal the column masses. This is matrix $D_c$.

    \[ D_c=diag(c) \]

    InertiaExplained

    matrix with 4 columnn.

    - First column contains the singular values (the sum of the squared singular values is the total inertia).

    - Second column contains the eigenvalues (the sum of the eigenvalues is the total inertia).

    - Third column contains the variance explained by each latent dimension.

    - Fourth column contains the cumulative variance explained by each dimension.

    LrSup

    cell containing the labels of the supplementary rows (i.e. the rows whicg did not participate to the fit).

    LcSup

    cell containing the labels of supplementary columns (i.e. the columns which did not participate to the fit).

    SupRowsN

    matrix of size length(LrSup)-by-c referred to supplementary rows. If there are no supplementary rows this field is not present.

    SupColsN

    matlab of size r-by-length(LcSup) referred to supplementary columns.

    If there are no supplementary columns this field is not present.

    RowsPriSup

    Principal coordinates of supplementary rows.

    If there are no supplementary rows this field is not present.

    RowsStaSup

    Standard coordinates of supplementary rows.

    If there are no supplementary rows this field is not present.

    RowsSymSup

    Symmetrical coordinates of supplementary rows.

    If there are no supplementary rows this field is not present.

    ColsPriSup

    Principal coordinates of supplementary columns.

    If there are no supplementary columns this field is not present.

    ColsStaSup

    Standard coordinates of of supplementary columns.

    If there are no supplementary columns this field is not present.

    ColsSymSup

    Symmetrical coordinates of supplementary columns.

    If there are no supplementary columns this field is not present.

    Data Types: struct

    Name-Value Pair Arguments

    Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

    Example: 'plots',plots=struct; plots.colorcols='k' , 'addx',0.01 , 'addy',0.01 , 'changedimsign', [true false] , 'xlimx',[-1 1] , 'ylimy',[0 1] , 'd1',2 , 'd2',3 ,'h',h1 where h1=subplot(2,1,1)

    plots —Customize plot appearance.scalar | structure.

    If plots is not a structure, a plot which shows the Principal coordinates of rows and columns is shown on the screen. If plots is a structure it may contain the following fields:

    Value Description
    alpha

    type of plot, scalar in the interval [0 1] or a string identifying the type of coordinates to use in the plot.

    If $plots.alpha='rowprincipal'$ the row points are in principal coordinates and the column coordinates are standard coordinates. Distances between row points are (approximated) chi-squared distances (row-metric-preserving). The position of the row points are at the weighted average of the column points.

    Note that 'rowprincipal' can also be specified setting plots.alpha=1.

    If $plots.alpha='colprincipal'$, the column coordinates are referred to as principal coordinates and the row coordinates as standard coordinates.

    Distances between column points are (approximated) chi-squared distances (column-metric-preserving). The position of the column points are at the weighted average of the row points.

    Note that 'colprincipal' can also be specified setting plots.alpha=0.

    If $plots.alpha='symbiplot'$, the row and column coordinates are scaled similarly. The sum of weighted squared coordinates for each dimension is equal to the corresponding singular values. These coordinates are often called symmetrical coordinates. This representation is particularly useful if one is primarily interested in the relationships between categories of row and column variables rather than in the distances among rows or among columns. 'symbiplot' can also be specified setting plots.alpha=0.5;

    If $plots.alpha='bothprincipal'$, both the rows and columns are depicted in principal coordinates. Such a plot is often referred to as a symmetrical plot or French symemtrical model. Note that such a symmetrical plot does not provide a feasible solution in the sense that it does not approximate matrix $D_r^{-0.5}(P-rc')D_c^{-0.5}$.

    If $plots.alpha='bothstandard'$, both the rows and columns are depicted in standard coordinates.

    If $plots.alpha='rowgab'$, rows are in principal coordinates and columns are in standard coordinates multiplied by the mass. This biplot has been suggested by Gabriel and Odoroff (1990).

    If $plots.alpha='colgab'$, columns are in principal coordinates and rows are in standard coordinates multiplied by the mass. This biplot has been suggested by Gabriel and Odoroff (1990).

    If $plots.alpha='rowgreen'$, rows are in principal coordinates and columns are in standard coordinates multiplied by square root of the mass.

    This biplot has been suggested by Greenacre and incorporates the contribution of points. In this display, points that contribute very little to the solution, are close to the center of the biplot and are relatively unimportant to the interpretation. This biplot is often referred as contribution biplot because it visually shows the most contributing points (Greenacre 2006b).

    If $plots.alpha='colgreen'$, columns in principal coordinates and rows in standard coordinates multiplied by the square root of the mass.

    This biplot has been suggested by Greenacre and incorporates the contribution of points. In this display, points that contribute very little to the solution, are close to the center of the biplot and are relatively unimportant to the interpretation. This biplot is often referred as contribution biplot because it shows visually the most contributing points (Greenacre 2006b).

    If $plots.alpha=scalar$ in the interval [0 1], row coordinates are given by $D_r^{-1/2} U \Gamma^\alpha$ and column coordinates are given by $D_c^{-1/2} V \Gamma^{1-\alpha}$. Note that for any choice of $\alpha$ the matrix product $ D_r^{-1/2} U \Gamma^\alpha (D_c^{-1/2} V \Gamma^{1-\alpha})^T$ optimally approximates matrix $D_r^{-0.5}(P-rc')D_c^{-0.5}$, in the sense that the sum of squared differences between $D_r^{1/2} D_r^{-1/2} U \Gamma^\alpha (D_c^{-1/2} V \Gamma^{1-\alpha})^T D_c^{1/2}$ and $D_r^{-0.5}(P-rc')D_c^{-0.5}$ is as small as possible.

    FontSize

    scalar which specifies the font size of row labels. The default value is 10.

    FontSizeSup

    scalar which specifies the font size of row labels of supplementary points. The default value is 10.

    MarkerSize

    scalar which specifies the marker size of symbols associated with rows. The default value is 10.

    SymbolRows

    character which specifies the symbol to use for row points. If this field is not present the default symbols is 'o'.

    SymbolRowsSup

    character which specifies the symbol to use for supplementary row points. If this field is not present the default symbols is 'o'.

    ColorRows

    character which specifies the symbol to use for row points or RGB triplet. If this field is not present the default color is 'b'.

    ColorCols

    character which specifies the symbol to use for column points or RGB triplet. If this field is not present the default color is 'r'.

    ColorRowsSup

    character which specifies the symbol to use for row points or RGB triplet. If this field is not present the default color is 'b'.

    ColorColsSup

    character which specifies the symbol to use for supplementary column points or RGB triplet. If this field is not present the default color is 'r'.

    MarkerFaceColorRows

    character which specifies the marker fill color to use for active row points or RGB triplet. If this field is not present the default color is 'auto'.

    MarkerFaceColorRowsSup

    character which specifies the marker fill color to use for supplementary row points or RGB triplet. If this field is not present the default color is 'auto'.

    Example: 'plots',plots=struct; plots.colorcols='k'

    Data Types: double

    addx —horizontal displacement for labels.scalar.

    Amount of horizontal displacement which has been put on the labels in the plot. The defalut value of addx is 0.04.

    Example: 'addx',0.01

    Data Types: double

    addy —vertical displacement for labels.scalar.

    Amount of vertical displacement which has been put on the labels in the plot. The defalut value of addy is 0.

    Example: 'addy',0.01

    Data Types: double

    changedimsign —change chosen dimension sign.boolean vector of length 2.

    Sometimes for better interpretability it is necessary to change the sign of the coordinates for the chosen dimension. If changedimsign(1) is true the sign of the coordinates for first chosen dimension is changed. If changedimsign(2) is true the sign of the coordinates for first chosen dimension is changed. As default the dimensions are the first and the second however, they can be changed using option plots.dim. The defaul value of changedimsign is [false false] that is the sign is not changed.

    Example: 'changedimsign', [true false]

    Data Types: boolean

    xlimx —Min and Max of the x axis.vector.

    Vector with two elements controlling minimum and maximum of the x axis.

    Example: 'xlimx',[-1 1]

    Data Types: double

    ylimy —Min and Max of the y axis.vector.

    Vector with two elements controlling minimum and maximum of the y axis.

    Example: 'ylimy',[0 1]

    Data Types: double

    d1 —Dimension to show on the horizontal axis.positive integer.

    Positive integer in the range 1, 2, .., K which indicates the dimension to show on the x axis. The default value of d1 is 1.

    Example: 'd1',2

    Data Types: single | double

    d2 —Dimension to show on the vertical axis.positive integer.

    Positive integer in the range 1, 2, .., K which indicates the dimension to show on the y axis. The default value of d2 is 2.

    Example: 'd2',3

    Data Types: single | double

    h —the axis handle of a figure where to send the moonplot.this can be used to host the moonplot in a subplot of a complex figure formed by different panels (for example a panel with moonplot from plots.

    alpha=0.2 and another with moonplot from plots.alpha=0.5).

    Example: 'h',h1 where h1=subplot(2,1,1)

    Data Types: Axes object (supplied as a scalar)

    Output Arguments

    References

    Benzecri, J.-P. (1992), "Correspondence Analysis Handbook", New-York, Dekker.

    Benzecri, J.-P. (1980), "L'analyse des donnees tome 2: l'analyse des correspondances", Paris, Bordas.

    Greenacre, M.J. (1993), "Correspondence Analysis in Practice", London, Academic Press.

    Bock, T. (2011), Improving the display of correspondence analysis using moon plots, "International Journal of Market Research", Vol. 53, pp. 307-326.

    Gabriel, K.R. and Odoroff, C. (1990), Biplots in biomedical research, "Statistics in Medicine", Vol. 9, pp. 469-485.

    Greenacre, M.J. (1993), Biplots in correspondence Analysis, "Journal of Applied Statistics", Vol. 20, pp. 251-269.

    This page has been automatically generated by our routine publishFS