This function makes use of subroutine smth.
The sintax of $smth$ is $[smo] = smth(x,y,w,span,cross)$. $x$, $y$ and
$w$ are 3 vectors of length $n$ containing respectively the $x$
coordinates, the $y$ coordinates and the weights. Input paramter $span$ is
a scalar in the interval (0 1] which defines the length of the elements
in the local regressions.
More precisely, if $span$ is in (0 1), the length of elements in the
local regressions is $m*2+1$, where $m$ is defined as the $\max([(n
\times span)/2],1)$ to ensure that minimum length of the local
regression is 3. Symbol $[ \cdot ]$ denotes the integer part.
Parameter $cross$ is a Boolean scalar. If it is set to true, it specifies
that, to compute the local regression centered on unit $i$, unit $i$ must
be deleted. Therefore for example,
[
1] if $m$ is 3 and $cross$ is true, the
smoothed value for observation $i$ uses a local regression with $x$
coordinates $(x(i-1), x(i+1))$, $y$ coordinates $(y(i-1), y(i+1))$ and
$w$ coordinates $(w(i-1), w(i+1))$, $i=2, \ldots, n-1$. The smoothed
values for observation 1 is $y(2)$ and the smoothed value for observation
$n$ is $y(n-1)$.
[
2] If $m$ is 3 and $cross$ is false, the smoothed value for
observations $i$ is based on a local regression with $x$ coordinates
$(x(i-1), x(i), x(i+1))$, $y$ coordinates $(y(i-1), y(i), y(i+1))$ and
$w$ coordinates $(w(i-1), w(1), w(i+1))$, $i=2, \ldots, n-1$. The
smoothed values for observation 1 uses a local regression based on
$(x(1), x(2))$, $(y(1), y(2))$, and $(w(1), w(2))$ while the smoothed
value for observation $n$ uses a local regression based on $(x(n-1),
x(n))$, $(y(n-1), y(n))$, and $(w(n-1), w(n))$.
[
3] If $m=5$ and $cross$ is true, the smoothed value for observations $i$
uses a local regression based on observations $(i-2), (i-1), (i+1),
(i+2)$, for $i=3, \ldots, n-2$. The smoothed values for observation 1
uses observations 2 and 3, the smoothed value for observations 2 uses
observations 1, 3 and 4 ...
[
4] If $m$ is 5 and $cross$ is false, the
smoothed value for observations $i$ uses a local regression based on
observations $(i-2), (i-1), i, (i+1), (i+2)$, for $i=3, \ldots, n-2$.
The smoothed values for observation 1 uses observations 1, 2 and 3, the
smoothed value for observations 2 uses observations 1, 2, 3 and 4 ...