We assume that the vector x contains discrete observations from a diffusion
process $x$ following the Ito stochastic differential equation
$$dx(t)= \sigma(t) \ dW(t) + b(t) \ dt,$$
where $W$ is a Brownian motion defined on the filtered probability space $(\Omega, (\mathcal{F}_t)_{t \in [0,T]}, P)$,
while $\sigma$ and $b$ are random processes, adapted to $\mathcal{F}_t$.
See the Reference for further mathematical details.
The spot volatility of the process $x$ at time $t \in [0,T]$ is defined as $V(t):=\sigma^2(t)$.
For any positive integer $n$, let $\mathcal{S}_{n}:=\{ 0=t_{0}\leq \cdots
\leq t_{n}=T \}$ be the observation times. Moreover, let $\delta_l(x):=
x(t_{l+1})-x(t_l)$ be the increments of $x$.
The Fourier estimator of the spot volatility at time $t \in [0,T]$ is
given by
$$\widehat V_{n,N,M}(\tau)= \sum_{|k|\leq M} \left(1-{|k|\over
M}\right)c_k(\sigma_{n,N}) \, e^{{\rm i}\frac{2\pi}{T}k\tau},$$
where:
$$c_k(\sigma_{n,N})={T\over {2N+1}} \sum_{|s|\leq N} c_{s}(dx_{n})c_{k-s}(dx_{n}),$$
$$c_k(dx_{n})= {1\over {T}} \sum_{l=0}^{n-1} e^{-{\rm i}\frac{2\pi}{T}kt_l}\delta_{l}(x).$$